2 Subdifferential Calculus

2.1 Convex Separation

The separating theorems are of fundamental importance in convex analysis and
optimization. This section provides some of the useful results.

Definition:(Hyperplane Separation) Two sets Cq,Cs are said to be sep-
arated by a hyperplane if there exists a # 0 such that

sup (a,z) < in

f {a
sup yecz< 2Y)

C1,Cy are said to be strictly separated if there exists a # 0 such that

sup (a,z) < inf (a,y)
zeCy yeCs

If  is a relative boundary point of C, a hyperplane that separates C' and {z}

is called a supporting hyperplane at x.

We will focus on the separation of two convex sets. To proof the existence
of such separation, we start with two lemmas.
Lemma: Let C' be an nonempty, closed convex set and T ¢ C. Then there
exists nonzero a such that

sup(a, z) < {a,7)

zeC

Proof. Let w = Pc(T) (which exists by the projection property). Then
(T —w,z) < (T —w,w) for all x € C.
Let a =7 — w # 0, then
(a,2) < (a,w) = (a,7) ~ ||T — w||* < (a,7)
O

Lemma: Let C' be a nonempty, convex subset of R" with x € C\ri(C). Then
there exists {x} such that x — x while xy, ¢ C for all k.

Proof. Since ri(C) is nonempty, pick zq €ri(C).
Let z;, = %x — 2.
Clearly, z — z. It remains to show that x; ¢ C. Suppose otherwise, then by

the Line Segment property,

_ 1 k k+1 x0 .
gt ) €nild)

This is a contradiction. Hence x, ¢ C for all k.



Theorem:(Supporting Hyperplane Theorem) Let C' be a nonempty, con-
vex set. Suppose T €rel 9C = C\ri(C). Then there exists a # 0 such that

sup(a, ) < (a,T)

zeC

Proof. Since T €rel OC. Then there exists zy, ¢ C with x), — T.
By lemma, there exists aj # 0 such that

sup(ak, ) < (ak, Tx)
zeC
By dividing |lax||, we may assume {a} is bounded.
Since {a} is bounded, it has a converging subsequence.
Without loss of generality (considering the subsequence), we may assume that
ar —~>a#0
Taking the limit, we have for all 2 € C

(a,x) < {a,T)
O

Theorem:(Separating Hyperplane Theorem) Let C1,Cy be two convex
sets. Suppose C; N Cy = (. Then there exists a hyperplane that separates C;
and Cg.

Proof. Consider C := C; — Cy. Since C1NCy =0, 0¢ C.

There are two cases:

Case (1): 0 € C.

By the supporting hyperplane theorem, there exists a # 0 such that

(a,z) < (a,0) =0, forallz € C
That is
(a,m1> < <a,:172>

Case (2): 0¢ C

The result follows directly from the previous lemma. O

In order to get strict separation, we need more assumptions.

Theorem:(Strict Hyperplane Separation) Let C, Cs be nonempty, closed
convex sets with C; N Cy = . Suppose at least one of the two sets is also
bounded. Then there exists a # 0 such that

sup {a,z1) < inf {(a,z
s (o,m) < i {a,a2)



Proof. Let C := C; — Cy. Then C is a nonempty, closed convex set with 0 ¢ C.
Then there exists a # 0 such that

v :=sup{a,z) <0
zeC

Then for all 1 € C1, x5 € Cy, we have {(a,21) <+ {a,x2). Then

sup (a,z1) <~v+ inf (a,22) < inf (a,x2)
o €CH

f
z,€C, z2€C>

2.2 Lipschitz Continuity

In this section, we focus on the Lipschitz continuity of convex functions.
First, we start with some lemmas.

Lemma: Let {ey,...,e,} denote the standard basis of R™. Let A := {x - €¢;}
Then the following holds:

1. x + de; € conv(A) for |§] <e
2. B(z;¢e/n) C conv(A)
Proof. 1. Since |§| < ¢, there exists A such that § = A\(—¢€) 4+ (1 — A)e. Then,

x+0e; = ANz —ee;) + (1 — N)(x + €e;) € conv(A)

2. Let y € B(x;¢/n). Then y = x4 Su, where [|u]] < 1. Write u = Y71 | Ae,
then

|\l <

Zn:Af <1
i=1

So

€ € "1
Yy :E—f—nu x—i—n;:l e ;Zln(:c—f—e e;)
Since x + e)je; € conv(A), y € conv(A). Hence B(z; <) C conv(A).
O

Lemma: If a convex function f : R® — R is bounded above on B(Z; ) for some
T € domf and 6 > 0, then f is bounded on B(Z,9).

Proof. Suppose f(z) < M for all z € B(Z, ). Let f(Z) =m.
Suppose z € B(Z;d) Let u:=7 + (T —z) = 2T — x. Then u € B(7, ). We have

Therefore, f(z) > 2f(Z) — f(u) > 2m — M. Hence f is bounded on B(Z, ). O



Theorem: Let f : R” — R be convex with € domf. Suppose f is bounded
on B(%,0) for some ¢ > 0, then f is Lipschitz continuous on B(Z; g)

Proof. Let z,y € B(T; %) with = # y. Suppose f < M on B(T;0). Let

wim = (z—y)
2|z — yl|
thenuEm—&—%BCw—i—(SB.Also
m—a+1u+a+1y
where o« = m. Then
F@) = £(y) € ——F(u) + —2—F(y) — F(y)
. y T a+1 v a—+1 4 y
1 2M

m(f(“) - fly)) < P

AMljz —y|| _ 4M][z —y]]
§+2|z—y|| ~ 5

O

Proposition: A convex function f : R® — R is locally Lipschitz continuous on
int(dom f).

Proof. Let T € int(domf) and let € > 0 be such that T £ ee; € domf for all .
Let A:= {T £ ee;}. Then B(T; <) C conv(A). Let M := max{f(a)| a € A}.
Pick z € B(%; £), then

Hence

F@) <D Nif(@+ee) <M

Then f is bounded above on B(Z; £). Hence, by the previous theorem, f is
Lipschitz continuous on B(7; 5,) O



