1.4 Relative Interior

Consider I = [0,1] C R. Then the interior of I is (0,1). However, if we consider
I as a subset in R?, then the interior of I is empty. This motivates the following
definition.

Definition:(Relative Interior) Let C' C R". We say that z is a relative
interior point of C if B(x;e)N aff(C') C C, for some € > 0. The set of all relative
interior point of C is called the relative interior of C, and is denoted by ri(C).
The relative boundary of C' is equal to C\ ri(C).

Lemma: Let A,, be an m-simplex in R™ with m > 1. Then ri(A,,) # 0.

Proof. Let xg, ..., be the vertices of A,,. Let

Note that V := span{x; —xq, ..., Zm — o } is the m-dimensional subspace parallel
to aff(A,,) = aff({xo, ...,z })-
Hence for all z € V, there exists unique \; such that

Tr = i)\z(xz - .To)
i=1

Let AO = 2121 Ai? then (AO, 7Am) € Rm+1 and

T = i)\ixi, with i)\z =0
=0 =0

Let L : V — R™*! be the mapping that sends x to (Ao, ..., A\p). It is easy to
check that L is linear and thus continuous.
Hence there exists ¢ such that

IL(u)]] < if f[ul] <6

m+1
Let z € (T + B(0,9)) Naff(A,,) Then, x = T + u, where ||u|| <.
(A

Since z,7 € aff(A,,) and w = z — T, u € V. Hence ||L(u)|| < #H

Suppose L(u) = (o, -+, fim), then u = 327" pia; and @ = Y7 (A5 + i)
Since Y7 i = 0, 21" (547 + pa) = 1. Therefore, z € A,,.
Thus (Z + B(0;6)) Naff(A,,) C Ay, s0 T € 1i(Ay,). O

Proposition: Let C be a nonempty convex set. Then ri(C) is nonempty.

Proof. Let m be the dimension of C.
If m = 0, then C' must be a singleton. Hence ri(C) # 0.
Suppose m > 1. We first show that there exists m + 1 affinely independent



elements x, ..., T, € C.

Let {zg,...,x;} be a maximal affinely independent set in C.

Consider K := aff({zo, ..., zx}). K C aff(C) since {zg, ...,z } C C.

Suppose y € C but y ¢ K. Then, {zg,...,zk,y} is also affinely independent,
which is a contradiction. Therefore C' C K and hence aff(C') C K. Then

k = dim(K) = dim(aff(C)) =m

Therefore, there exists m + 1 affinely independent elements xq, ..., ., € C.
Let A,, be the m-simplex formed by {zo, ...,z }. By above, aff(A,,) = aff(C).
Since ri(A,,) is not empty, it follows that ri(C) is also nonempty. O

The following is the most fundamental result about relative interiors.
Proposition:(&ine Segment Principle) Let C be a nonempty convex set. If
z €ri(C), T € C, then Az + (1 — N7 € ri(C) for A € (0,1].

Proof. Fix X € (0,1]. Consider ) = Az + (1 — \)T.
Let L be the subspace parallel to aff(C). Define Br(0,¢) := {z € L| ||z| < €}.
Since T € C, for all € > 0, we have T € C' + B (0,¢). Then

B(zx;e)Naff(C) = {Az + (1 — X\)ZT} + Br(0;¢€)
C{rz}+ (1 —-XNC+(2—N)BL(05¢)

:(1—)\)0+)\|:$+BL<0;2;)\6):|

Since z € ri(C), x + By, (0; 2;’\e> C C, for sufficiently small e.

So B(zx;e)Naff(C) € AC + (1 — A)C = C (since C is convex). Therefore, ) €
ri(C).
O

Proposition:(Prolongation Lemma) Let C be a nonempty convex set. Then
we have

z €1i(C) < VT € C, Iy > 0 such that x +y(z — Z) € C.

In other words, x is a relative interior point iff every line segment in C' having
x as one of the endpoints can be prolonged beyond = without leaving C'.

Proof. Suppose the condition holds for x. Let T € 1i(C). If x = T, then we are
done. So assume x # T. Then there exists v > 0 such that y = 2 +~(z—7) € C.
Hence z = ﬁy + ﬁf Since T € ri(C), y € C, by the line segment principle,
we have z € ri(C). The other direction is clear from the fact that « € ri(C). O

Next, we introduce some calculus rules related to the relative interior of convex
sets.

Proposition: Let C be a nonempty convex set. Then



(b) 1i(C) = ri(C).
(c) Let D be another nonempty convex set. Then the following are equivalent:

(i) C and D have the same relative interior.
(ii) C and D have the same closure.
(iii) ri(C) € D C C.

Proof. (a) 1i(C) C C since 1i(C) C C. Conversely, suppose = € C.
Let T € ri(C). Consider zj, = 17+ (1 — 1)z. By the line segment principle,
each xy € ri(C). Also, x — . Therefore, z € ri(C).

(b) Note that aff(C') = aff(C). Then by the definition of relative interior, ri(C') C
1i(C). Now suppose T € 1i(C), we will show that T € ri(C).
Pick z € ri(C). We may assume = # T.
Then by the prolongation lemma, there exists v > 0 such that

Z+y@—2)eC
Then by the line segment principle and the fact that x € ri(C),

_ Y
r=——x+
v+1 v+1

(ZT+~y(T—x)) €ri(C)

(c) Suppose ri(C)=ri(D), then ri(C) = ri(D). Hence C' = D
Suppose C = D, then 1i(C)=ri(C)=ri(D)=ri(D).
Therefore (i) agld (ii) are equivalent.

Suppose C' = D, then

Suppose 1i(C) € D C cl(C), then ri(C) € D C C.

Since 1i(C) = C, 1i(C) = D = ri(D).
Hence C = D and (ii),(iii) are equivalent.

Proposition: Let C; and C5 be nonempty convex sets. We have
I"i(Cl) n I‘i(CQ) - I‘i(Cl N CQ), CinCy C ﬁlﬂ@
Furthermore, if ri(C7) Nri(Cy) # 0, then

I‘i(01) N I‘i(CQ) = ri(C’1 N CQ), CinNCy = aﬂ@



Proof. Let x € ri(C1) Nri(Cy), y € C1 N Cy. By the prolongation lemma, the
line segment connecting = and y can be prolonged beyond x without leaving C
and Cy. Hence, by the prolongation lemma again, = € ri(Cy N Cy).

Since C; N Cy C C1 N Cy, which is closed, we have C; N Cy C C1 N Cs.

Now suppose 1i(C;) N1i(Ca) # 0 and let = € 1i(Cy) N1i(C2) and y € C; N Cs.
Consider o, — 0 and y = axx + (1 — ag )y, then yr — y. By the line segment
property, yy € ri(C1) N1i(Cs). Hence y € ri(Cy) Nri(Cs). Then

aﬂﬁg - fi(Cl) n I‘i(CQ) C CiNCs.

Hence C; N Cy = C; N Cy. Moreover, the closure of ri(C;) N1i(Cy) and C; N Cy
are the same. Hence, they have the same relative interior. Then

I‘i(Cl n 02) = I‘l(I‘l(Cl) n I'I(CQ)) g I‘l(Cl) N I‘I(CQ)
O

Proposition: Let B : R™ — R? be an affine mapping and let Q2 be a convex
subset of R™. Then
B(ri Q) =ri B(Q).

Proof. Let y € B(ri Q), then there exits x € ri Q such that y = Bxz. By the
prolongation lemma, for any Z € 2, there exists v > 0 such that z+~(x—Z) € Q.
Hence y+v(y—y) = B(z+7v(z—7)) € B(Q), where § = BZ. Since 7 is arbitrary,
by the prolongation lemma again, y € ri B(£2). Hence B(ri ) C ri B(12).

To show the other direction, we first show that B(Q2) = B(ri 2). Note that
Q =r1i Q, hence we have

B(Q) € B(Q) = BGi Q)

N

B(ri ),

where the last inclusion follows from the continuity of B. This shows that
B(9) C B(ri Q). Since B(ri Q) C B(Q), we have B(Q2) = B(ri Q).
Now since B(Q) = B(ri Q), ri B(Q) =ri B(ri Q). Hence

ri B(2) =ri B(ri Q) C B(ri Q).



