1.2.2 Affine Sets and Affine Hull

Given a,b € R”, the line connecting them is defined as
Lla,b] :={Aa+ (1 —A\)b| X € R}

Note that there is no restriction on A.

Definition:(Affine Set) A subset S of R" is affine if for any a,b € S, we
have L[a,b] C S.

Definition:(Affine Combination)
Given z1, ...,z € R™, an element in the form z = Y" | \;a;, where Y ;" A =
1 is called an affine combination of x1, ..., Zn,.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X C R™ is

aff(X) := ﬂ{S’\ S is affine and X C S}

Proposition: For any subset X of R",

m

aff(X) = {i)\ﬂ?A Z/\l =1, x; € X}
i=1 =1

In fact, an affine set S C R" is of the form x 4+ V, where x € S and V is a
vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:
1. S is affine
2. S is of the form z + V for some subspace V C R” and z € S.
Also, V is unique and equals to S — S.

Proof. Suppose S is affine. We first assume 0 € S. Let z € S and v € R. Since
0 € S, we have yz + (1 — )0 = v € S. Now, suppose z,y € S. Then z + y =
2(%x + %y) € S. Hence, S is closed under addition and scalar multiplication.
Therefore, S = 0+ S is a linear subspace. If 0 ¢ S, then 0 € S — z for any
x € S. S80S —x is a linear subspace. Therefore, S =z + V.

The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = z1 + Vi = zo + V5, where z1,20 € S, Vi, V5 are linear



affex)

Figure 1: Affine hull and the parallel subspace

subspaces. Then 1 — 29 + V7 = V5. Since V5 is a subspace, z1 — 2 € V7. So
Vo =21 —xzo + V7 C Vi, Similarly, V; C V,. Therefore V is unique.

Since S=xz+V,s0V=8—-2xCS—S5. Let u,v € S and z = u —v. Then
S —v =1V by the uniqueness of V. So z € S—v =V and hence S-S CV. 0O

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C' is defined to be the dimension of aff(C').

Definition:(Affinely Independent) z, ..., x,, € R" are affinely independent
if
[ Xiwi =0, > A =0] = [\; =0 for all ]

Proposition: zg,...,z,, € R" are affinely independent if and only if z; —
20, .-, T — Xo are linearly independent.

Proof. Suppose xg, ..., T, are affinely independent. Suppose

m

Z )\z(xz — .7;0) =0

i=1



Let Ao := —>_", \i, then we have

Aoxo + Zm: Nix; =0

i=1

Since Yy Ai = 0, A\; = 0 for all i. Hence, z1 — %o, ..., &y, — 2o are linearly
independent.
The converse follows directly from the definition O

Lemma: Let S := aff({zo, ...,z }), where x; € R™. Then span{x; —xq, ..., T, —
xo} is the subspace parallel to S.

Proof. Let V be the subspace parallel to S. Then S —xzg = V.
Hence span{z, — zq, ...,xm —xo} C V.
Let z € V, then x 4+ zg € S. So

T+ x9= zm:)\ixi, where Z)‘i =1
i=0

Therefore .

xTr = Z)‘i(xi — 3?0) S Span{331 — X0, Tm — 1‘0}
=1

O

Proposition: xg, ..., z,, are affinely independent in R™ if and only if its affine
hull is m-dimensional.

Proof. Suppose xg, ..., T, are affinely independent. Then x; — xg, ..., T, — To
are linearly independent. Therefore, V' = span{z; — g, ..., 2,y — To} is m-
dimensional. Since V is the subspace parallel to aff({zo, ..., Tm }), aff({z0, ..., Zm })
is m-dimensional.

The converse is proven similarly. O

Definition:(m-Simplex)Let xg, ..., x,, be affinely independent in R™. Then
the set
Ay, = conv({zg, ..., Tm })

is called a m-simplex in R™ with vertices x;.

Proposition: Consider a m-simplex A,, with vertices zg, ..., Z,,. For every
x € A, there is a unique element (Ag, ..., A\) € RT‘H such that

J;zz)\il‘i, Z)\i =L



Proof. The existence follows directly from the definition. We only need to show
the uniqueness.
Suppose (Ag, s Am), (o, -y fbm) € ]RT"H satisfy

T = Z)\ﬂi = Zuiﬂ% Z/\i = Z/M =1
Z(/\i — pi)x; =0, Z()‘z — 1) =0

Since xg, ..., x,, are affinely independent, A\; — u; = 0 for all 4. O

Then

Ao X,

Ao

% X,
Figure 2: Examples of m-simplex

Definition: The cone generated by a set X is the set of all nonnegative combi-
nation of elements in X. A nonnegative (positive) combination of 1, zs, ..., Tm
is of the form

> Xiwi, where A >0 (A > 0).

i=1

Next, we prove a important theorem concerning convex hulls.

Theorem:(Caratheodory’s Theorem) Let X be a nonempty subset of R™.

(a) Every nonzero vector of cone(X) can be represented as a positive combina-
tion of linearly independent vectors from X.

(b) Every vector from conv(X) can be represented as a convex combination of
at most n + 1 vectors from X.



Proof. (a) Let « € cone(X) and = # 0. Suppose m is the smallest integer such
that x is of the form ZZ’;I Aixi, where A\; > 0 and x; € X. Suppose that x; are
not linearly independent. Therefore, there exist p; with at least one u; positive,
such that >, p;z; = 0. Consider 7, the largest v such that \; — yu; > 0 for
all i. Then Y " | (\; — Jp)z; is a representation of x as a positive combination
of less than m vectors, contradiction. Hence, x; are linearly independent.

(b) Consider Y = {(z,1) : € X}. Let z € conv(X). Then z = Y " Nz,
where Y% A\ =1, s0 (z,1) € cone(Y).

By (a), (z,1) = Zizl Ai(x;, 1), where A; > 0. Also, (z1,1), ..., (21, 1) are linearly
independent vectors in R"!(at most n + 1). Hence, z = 22:1 Nowi, S N =
1 O

Proposition: Let X C R"™ be a compact set. Then conv(X) is compact.
Proof. Let {z*} be a sequence in conv(X). By Caratheodory’s Theorem,

n+1

k_ k, .k
¥ = E i X5
i=1

where \F >0, 28 € X and 30\ = 1.

Note that the sequence {(A},..., A%, 2% ... ,2% )} is bounded. Then it has a
limit point (A1, ..., \nt1, 21, ..., Tny1), Where Z?:ll X =1and 2; € X.

Hence 37! \iz; € conv(X) is a limit point of the sequence z*.

Therefore, conv(X) is compact. O

1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take val-
ues in R := (—o0, 0o], with the convention that a+0co = oo Va € R, co+00 = 00,
and t- 00 = o0 Vt > 0.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of R™. A function
f:C = Ris called convex on C if

FOz+ (1 —=Ny) <Af(x)+ (1 — Ny, Vz,y € C,VA € [0,1].

A function is called stricly conver if the inequality above is strict for all z,y € C
with z # y, and all A € (0,1). A function is called concave if (—f) is convex.

Definition:(Level Sets) For a function f : C — R, we define the level sets of
ftobe {z| f(z) <A}

If a function is convex, then all its level sets are also convex (Exercise).
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Figure 3: Convex Function

However, the convexity of all level sets of a function does not necessarily imply
the convexity of the function itself.

Examples of Convex Functions
The following functions are convex:

(a) f(x):={a,x)+bfor x € R", where a € R™ and b € R.

(b)

(c)

(d) F(z):= 327 Az for z € R", where A is a n x n symmetric positive semidef-
inite matrix. (i.e. 27 Az > 0 for all z € R?)

g(z) := ||z|| for z € R™.
h(z) := 2% for x € R.

Definition:(Epigraph and Effective Domain)
The epigraph of a function f : X — [—00, 00], where X C R, is given by

epif = {(z,w)| z € X, weR, f(z)<w}
The effective domain of f is given by
domf = {z| f(z) < oo}.

Note that domf is just the projection of epif on R™.



Definition:(Proper Function)

A function f is proper if f(z) < oo for at least one x € X. f is improper if it
is not proper. By considering epif, f is proper means that epif is not empty
and does not contain any vertical line.

Theorem:(Jensen inequality)
A function f : R™ — R is convex if and only if for any A; > 0 with > X; =1
and for any elements z; € R™, it holds that

f(Z/\ixi) < Z)\if(mi)

Proof. Tt suffices to prove that any convex function satisfies the Jensen inequal-
ity. We will prove this by induction.

The case m = 1,2 are simple. So suppose the inequality holds for all & < m.
Suppose A; > 0 satisfies Z?:{l Ai =1 Then Y} " A =1— Ay

If Ajpqy1 =1, then A; = 0 for all 4. Then the inequality holds.

So suppose A1 < 1. Then

and

i
T+ A x
1 _ /\erl 7 + m+1 m+1)

>
=1

<(1- )\m+1)f(z Ail‘i) + A1 f (@m1)
i=1

- >\m+1

—_

<(1-=Ant1) Z ﬁf(wz) + Am+1Tm41

The following gives a geometric characterization of convexity.

Proposition: A function f : R® — R is convex if and only if epif ¢ R**!
is convex.

Proof. Assume f is convex. Let (z1,%1), (x2,t2) € epif and A € [0, 1]. Then

FQar + (1= Nzg) <Af(1) + (1= A)f(w2) < My + (1= At



Hence (A(z1,t1) + (1 — X)(x2,t2) € epif.
Conversely, suppose epif is convex. Let x1, 29 € domf and A € [0, 1].
Since epif is convex, A(z1, f(z1)) + (1 — X)(x2, f(x2)) € epif. Then

SOy + (1= Nag) < Af(21) + (1= N) f(2)
Therefore, f is convex. O

Definition:(Closed function) If the epigragh of a function f : X — R is
closed, we say that f is a closed function.

For example, the indicator funtion dx is convex if and only if X is convex,
is closed if and only if X is closed, where

Sx(x) = {O reX

oo otherwise

In fact, closedness is related to the concept of lower semicontinuity.
Recall that a function f is called lower semicontinuous at x € X if

f(z) < liminf f(zy)

for every sequence {z;} C X with x — xx. f is lower semicontinuous if it is
lower semicontinuous at each x € X. f is upper semicontinuous if —f is lower
semicontinuous.

Proposition: Let f : R® — R be a function, then the following are equiv-
alent:

(i) The level set V,, = {z|f(x) < ~} is closed for every ~.

(ii) f is lower semicontinuous.

(iii) epif is closed.

Proof. If f(x) = oo for all z, then the result holds. So assume f(x) < oo for
some z € R™. Therefore, epif is nonempty and there exists level sets of f that
are nonempty.

(i) = (ii). Assume V; is closed for every . Suppose f is not lower semicon-
tinuous, that is

f(z) > liminf f(zx)
k—o00
for some x and sequence {zj} converging to z. Let ~y satisfies
f(x) >~ > liminf f(x).
k—o0

Hence, there exists a subsequence {xy,} such that f(x,) < v for all i. So,
{zr,} C V. But V, is closed, = also belongs to V,. Therefore, f(z) < ~, con-
tradiction.



(i) = (iii). Assume f is lower semicontinuous. Let (x,w) be the limit of
{(zg,wr)} C epi(f). We have f(zr) < wy for all k. Since f is lower semicon-
tinuous, taking limit we have,

f(@) < liminf f(z) < w.

Hence (z,w) € epif and so epif is closed.

(iii) = (i). Assume epif is closed. Let {zx} be a sequence in V., converging
to = for some . We have f(z) <+, so (zx,7) € epif for each k. Since epif
is closed and (zy,7y) — (x,7), we have (x,7) € epif, that is f(x) < ~. Hence
x € V, and V, is closed. O



