## 1.2.2 Affine Sets and Affine Hull

Given  $a, b \in \mathbb{R}^n$ , the line connecting them is defined as

$$\mathcal{L}[a,b] := \{\lambda a + (1-\lambda)b \mid \lambda \in \mathbb{R}\}\$$

Note that there is no restriction on  $\lambda$ .

**Definition:**(Affine Set) A subset S of  $\mathbb{R}^n$  is affine if for any  $a, b \in S$ , we have  $\mathcal{L}[a, b] \subseteq S$ .

## **Definition:**(Affine Combination)

Given  $x_1, ..., x_m \in \mathbb{R}^n$ , an element in the form  $x = \sum_{i=1}^m \lambda_i x_i$ , where  $\sum_{i=1}^m \lambda_i = 1$  is called an affine combination of  $x_1, ..., x_m$ .

**Proposition:** A set S is affine if and only if it contains all affine combination of its elements.

**Definition:**(Affine Hull) The *affine hull* of a set  $X \subseteq \mathbb{R}^n$  is

 $\operatorname{aff}(X) := \bigcap \{ S \mid S \text{ is affine and } X \subseteq S \}$ 

**Proposition:** For any subset X of  $\mathbb{R}^n$ ,

$$\operatorname{aff}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \ x_i \in X \right\}$$

In fact, an affine set  $S \subset \mathbb{R}^n$  is of the form x + V, where  $x \in S$  and V is a vector space called the subspace parallel to S.

**Lemma:** Let S be nonempty. Then the following are equivalent:

- 1. S is affine
- 2. S is of the form x + V for some subspace  $V \subset \mathbb{R}^n$  and  $x \in S$ .

Also, V is unique and equals to S - S.

*Proof.* Suppose S is affine. We first assume  $0 \in S$ . Let  $x \in S$  and  $\gamma \in \mathbb{R}$ . Since  $0 \in S$ , we have  $\gamma x + (1 - \gamma)0 = \gamma x \in S$ . Now, suppose  $x, y \in S$ . Then  $x + y = 2(\frac{1}{2}x + \frac{1}{2}y) \in S$ . Hence, S is closed under addition and scalar multiplication. Therefore, S = 0 + S is a linear subspace. If  $0 \notin S$ , then  $0 \in S - x$  for any  $x \in S$ . So S - x is a linear subspace. Therefore, S = x + V.

The other direction is simple, just use the fact that V is a linear subspace.

Now suppose  $S = x_1 + V_1 = x_2 + V_2$ , where  $x_1, x_2 \in S$ ,  $V_1, V_2$  are linear



Figure 1: Affine hull and the parallel subspace

subspaces. Then  $x_1 - x_2 + V_1 = V_2$ . Since  $V_2$  is a subspace,  $x_1 - x_2 \in V_1$ . So  $V_2 = x_1 - x_2 + V_1 \subseteq V_1$ . Similarly,  $V_1 \subseteq V_2$ . Therefore V is unique. Since S = x + V, so  $V = S - x \subseteq S - S$ . Let  $u, v \in S$  and z = u - v. Then S - v = V by the uniqueness of V. So  $z \in S - v = V$  and hence  $S - S \subseteq V$ .  $\Box$ 

**Definition:**(Dimension of affine and convex sets) The dimension of aff(X) is defined to be the dimension of the subspace parallel to X. The dimension of a convex set C is defined to be the dimension of aff(C).

**Definition:**(Affinely Independent)  $x_0, ..., x_m \in \mathbb{R}^n$  are affinely independent if

$$\left[\sum \lambda_i x_i = 0, \ \sum \lambda_i = 0\right] \Longrightarrow [\lambda_i = 0 \text{ for all } i]$$

**Proposition:**  $x_0, ..., x_m \in \mathbb{R}^n$  are affinely independent if and only if  $x_1 - x_0, ..., x_m - x_0$  are linearly independent.

*Proof.* Suppose  $x_0, ..., x_m$  are affinely independent. Suppose

$$\sum_{i=1}^{m} \lambda_i (x_i - x_0) = 0$$

Let  $\lambda_0 := -\sum_{i=1}^m \lambda_i$ , then we have

$$\lambda_0 x_0 + \sum_{i=1}^m \lambda_i x_i = 0$$

Since  $\sum_{i=0}^{m} \lambda_i = 0$ ,  $\lambda_i = 0$  for all *i*. Hence,  $x_1 - x_0, ..., x_m - x_0$  are linearly independent.

The converse follows directly from the definition

**Lemma:** Let  $S := aff(\{x_0, ..., x_m\})$ , where  $x_i \in \mathbb{R}^n$ . Then  $span\{x_1 - x_0, ..., x_m - x_0\}$  is the subspace parallel to S.

*Proof.* Let V be the subspace parallel to S. Then  $S - x_0 = V$ . Hence span $\{x_1 - x_0, ..., x_m - x_0\} \subseteq V$ . Let  $x \in V$ , then  $x + x_0 \in S$ . So

$$x + x_0 = \sum_{i=0}^{m} \lambda_i x_i$$
, where  $\sum \lambda_i = 1$ 

Therefore

$$x = \sum_{i=1}^{m} \lambda_i (x_i - x_0) \in \operatorname{span} \{ x_1 - x_0, x_m - x_0 \}$$

**Proposition:**  $x_0, ..., x_m$  are affinely independent in  $\mathbb{R}^n$  if and only if its affine hull is m-dimensional.

*Proof.* Suppose  $x_0, ..., x_m$  are affinely independent. Then  $x_1 - x_0, ..., x_m - x_0$  are linearly independent. Therefore,  $V = \text{span}\{x_1 - x_0, ..., x_m - x_0\}$  is m-dimensional. Since V is the subspace parallel to aff $(\{x_0, ..., x_m\})$ , aff $(\{x_0, ..., x_m\})$  is m-dimensional.

The converse is proven similarly.

**Definition:**(m-Simplex)Let  $x_0, ..., x_m$  be affinely independent in  $\mathbb{R}^n$ . Then the set

$$\Delta_m := \operatorname{conv}(\{x_0, ..., x_m\})$$

is called a m-simplex in  $\mathbb{R}^n$  with vertices  $x_i$ .

**Proposition:** Consider a m-simplex  $\Delta_m$  with vertices  $x_0, ..., x_m$ . For every  $x \in \Delta_m$ , there is a unique element  $(\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}_+$  such that

$$x = \sum \lambda_i x_i, \ \sum \lambda_i = 1.$$

*Proof.* The existence follows directly from the definition. We only need to show the uniqueness.

Suppose  $(\lambda_0, ..., \lambda_m), \ (\mu_0, ..., \mu_m) \in \mathbb{R}^{m+1}_+$  satisfy

$$x = \sum \lambda_i x_i = \sum \mu_i x_i, \ \sum \lambda_i = \sum \mu_i = 1$$

Then

$$\sum (\lambda_i - \mu_i) x_i = 0, \ \sum (\lambda_i - \mu_i) = 0$$

Since  $x_0, ..., x_m$  are affinely independent,  $\lambda_i - \mu_i = 0$  for all *i*.

Figure 2: Examples of m-simplex

**Definition:** The cone generated by a set X is the set of all nonnegative combination of elements in X. A nonnegative (positive) combination of  $x_1, x_2, ..., x_m$  is of the form

$$\sum_{i=1}^{m} \lambda_i x_i, \text{ where } \lambda_i \ge 0 \ (\lambda_i > 0).$$

Next, we prove a important theorem concerning convex hulls.

**Theorem:**(Caratheodory's Theorem) Let X be a nonempty subset of  $\mathbb{R}^n$ .

- (a) Every nonzero vector of cone(X) can be represented as a positive combination of linearly independent vectors from X.
- (b) Every vector from conv(X) can be represented as a convex combination of at most n + 1 vectors from X.



*Proof.* (a) Let  $x \in \text{cone}(X)$  and  $x \neq 0$ . Suppose m is the smallest integer such that x is of the form  $\sum_{i=1}^{m} \lambda_i x_i$ , where  $\lambda_i > 0$  and  $x_i \in X$ . Suppose that  $x_i$  are not linearly independent. Therefore, there exist  $\mu_i$  with at least one  $\mu_i$  positive, such that  $\sum_{i=1}^{m} \mu_i x_i = 0$ . Consider  $\overline{\gamma}$ , the largest  $\gamma$  such that  $\lambda_i - \gamma \mu_i \geq 0$  for all i. Then  $\sum_{i=1}^{m} (\lambda_i - \overline{\gamma}\mu) x_i$  is a representation of x as a positive combination of less than m vectors, contradiction. Hence,  $x_i$  are linearly independent.

(b) Consider  $Y = \{(x, 1) : x \in X\}$ . Let  $x \in \operatorname{conv}(X)$ . Then  $x = \sum_{i=1}^{m} \lambda_i x_i$ , where  $\sum_{i=1}^{m} \lambda_i = 1$ , so  $(x, 1) \in \operatorname{cone}(Y)$ . By (a),  $(x, 1) = \sum_{i=1}^{l} \lambda'_i(x_i, 1)$ , where  $\lambda_i > 0$ . Also,  $(x_1, 1), \dots, (x_l, 1)$  are linearly

By (a),  $(x, 1) = \sum_{i=1}^{l} \lambda'_i(x_i, 1)$ , where  $\lambda_i > 0$ . Also,  $(x_1, 1), \dots, (x_l, 1)$  are linearly independent vectors in  $\mathbb{R}^{n+1}$  (at most n+1). Hence,  $x = \sum_{i=1}^{l} \lambda'_i x_i, \sum_{i=1}^{m} \lambda'_i = 1$ 

**Proposition:** Let  $X \subseteq \mathbb{R}^n$  be a compact set. Then  $\operatorname{conv}(X)$  is compact.

*Proof.* Let  $\{x^k\}$  be a sequence in conv(X). By Caratheodory's Theorem,

$$x^k = \sum_{i=1}^{n+1} \lambda_i^k x_i^k$$

where  $\lambda_i^k \geq 0$ ,  $x_i^k \in X$  and  $\sum_{i=1}^{n+1} \lambda_i^k = 1$ . Note that the sequence  $\{(\lambda_1^k, ..., \lambda_{n+1}^k, x_1^k, ..., x_{n+1}^k)\}$  is bounded. Then it has a limit point  $(\lambda_1, ..., \lambda_{n+1}, x_1, ..., x_{n+1})$ , where  $\sum_{i=1}^{n+1} \lambda_i = 1$  and  $x_i \in X$ . Hence  $\sum_{i=1}^{n+1} \lambda_i x_i \in \text{conv}(X)$  is a limit point of the sequence  $x^k$ . Therefore, conv(X) is compact.

# **1.3** Convex Functions

In this course, we will consider extended-real-valued functions, which take values in  $\overline{\mathbb{R}} := (-\infty, \infty]$ , with the convention that  $a + \infty = \infty \quad \forall a \in \mathbb{R}, \ \infty + \infty = \infty$ , and  $t \cdot \infty = \infty \quad \forall t > 0$ .

#### 1.3.1 Convex Functions

**Definition:**(Convex Functions) Let C be a convex subset of  $\mathbb{R}^n$ . A function  $f: C \to \overline{\mathbb{R}}$  is called *convex* on C if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)y, \forall x, y \in C, \forall \lambda \in [0, 1].$$

A function is called *stricly convex* if the inequality above is strict for all  $x, y \in C$  with  $x \neq y$ , and all  $\lambda \in (0, 1)$ . A function is called *concave* if (-f) is convex.

**Definition:**(Level Sets) For a function  $f : C \to \mathbb{R}$ , we define the *level sets* of f to be  $\{x \mid f(x) \leq \lambda\}$ .

If a function is convex, then all its level sets are also convex (Exercise).



Figure 3: Convex Function

However, the convexity of all level sets of a function does not necessarily imply the convexity of the function itself.

### **Examples of Convex Functions**

The following functions are convex:

- (a)  $f(x) := \langle a, x \rangle + b$  for  $x \in \mathbb{R}^n$ , where  $a \in \mathbb{R}^n$  and  $b \in \mathbb{R}$ .
- (b) g(x) := ||x|| for  $x \in \mathbb{R}^n$ .
- (c)  $h(x) := x^2$  for  $x \in \mathbb{R}$ .
- (d)  $F(x) := \frac{1}{2}x^T Ax$  for  $x \in \mathbb{R}^n$ , where A is a  $n \times n$  symmetric positive semidefinite matrix. (i.e.  $x^T Ax \ge 0$  for all  $x \in \mathbb{R}^n$ )

## **Definition:**(Epigraph and Effective Domain)

The *epigraph* of a function  $f: X \to [-\infty, \infty]$ , where  $X \subset \mathbb{R}^n$ , is given by

$$epif = \{(x, w) | x \in X, w \in \mathbb{R}, f(x) \leq w\}.$$

The *effective domain* of f is given by

$$\operatorname{dom} f = \{ x | f(x) < \infty \}.$$

Note that dom f is just the projection of epif on  $\mathbb{R}^n$ .

## **Definition:**(Proper Function)

A function f is proper if  $f(x) < \infty$  for at least one  $x \in X$ . f is improper if it is not proper. By considering epif, f is proper means that epif is not empty and does not contain any vertical line.

## Theorem:(Jensen inequality)

A function  $f : \mathbb{R}^n \to \overline{\mathbb{R}}$  is convex if and only if for any  $\lambda_i \ge 0$  with  $\sum \lambda_i = 1$ and for any elements  $x_i \in \mathbb{R}^n$ , it holds that

$$f\left(\sum \lambda_i x_i\right) \le \sum \lambda_i f(x_i)$$

*Proof.* It suffices to prove that any convex function satisfies the Jensen inequality. We will prove this by induction.

The case m = 1, 2 are simple. So suppose the inequality holds for all  $k \leq m$ . Suppose  $\lambda_i \geq 0$  satisfies  $\sum_{i=1}^{m+1} \lambda_i = 1$ . Then  $\sum_{i=1}^m \lambda_i = 1 - \lambda_{m+1}$ . If  $\lambda_{m+1} = 1$ , then  $\lambda_i = 0$  for all *i*. Then the inequality holds. So suppose  $\lambda_{m+1} < 1$ . Then

$$\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} = 1$$

and

$$f\left(\sum_{i=1}^{m+1} \lambda_i x_i\right) = f\left((1 - \lambda_{m+1})\sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} x_i + \lambda_{m+1} x_{m+1}\right)$$
$$\leq (1 - \lambda_{m+1}) f\left(\sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} x_i\right) + \lambda_{m+1} f(x_{m+1})$$
$$\leq (1 - \lambda_{m+1})\sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} f(x_i) + \lambda_{m+1} x_{m+1}$$
$$= \sum_{i=1}^{m+1} \lambda_i f(x_i)$$

The following gives a geometric characterization of convexity.

**Proposition:** A function  $f : \mathbb{R}^n \to \overline{\mathbb{R}}$  is convex if and only if  $epi f \subset \mathbb{R}^{n+1}$  is convex.

*Proof.* Assume f is convex. Let  $(x_1, t_1), (x_2, t_2) \in epif$  and  $\lambda \in [0, 1]$ . Then

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \le \lambda t_1 + (1-\lambda)t_2$$

Hence  $(\lambda(x_1, t_1) + (1 - \lambda)(x_2, t_2) \in \text{epi}f$ . Conversely, suppose epif is convex. Let  $x_1, x_2 \in \text{dom}f$  and  $\lambda \in [0, 1]$ . Since epif is convex,  $\lambda(x_1, f(x_1)) + (1 - \lambda)(x_2, f(x_2)) \in \text{epi}f$ . Then

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Therefore, f is convex.

**Definition:**(Closed function) If the epigraph of a function  $f : X \to \overline{\mathbb{R}}$  is closed, we say that f is a *closed* function.

For example, the indicator function  $\delta_X$  is convex if and only if X is convex, is closed if and only if X is closed, where

$$\delta_X(x) := \begin{cases} 0 & x \in X \\ \infty & \text{otherwise} \end{cases}$$

In fact, closedness is related to the concept of lower semicontinuity. Recall that a function f is called *lower semicontinuous* at  $x \in X$  if

$$f(x) \le \liminf_{k \to \infty} f(x_k)$$

for every sequence  $\{x_k\} \subset X$  with  $x \to x_k$ . f is lower semicontinuous if it is lower semicontinuous at each  $x \in X$ . f is upper semicontinuous if -f is lower semicontinuous.

**Proposition:** Let  $f : \mathbb{R}^n \to \overline{\mathbb{R}}$  be a function, then the following are equivalent:

- (i) The level set  $V_{\gamma} = \{x | f(x) \le \gamma\}$  is closed for every  $\gamma$ .
- (ii) f is lower semicontinuous.
- (iii) epif is closed.

*Proof.* If  $f(x) = \infty$  for all x, then the result holds. So assume  $f(x) < \infty$  for some  $x \in \mathbb{R}^n$ . Therefore, epif is nonempty and there exists level sets of f that are nonempty.

(i)  $\implies$  (ii). Assume  $V_{\gamma}$  is closed for every  $\gamma$ . Suppose f is not lower semicontinuous, that is

$$f(x) > \liminf_{k \to \infty} f(x_k)$$

for some x and sequence  $\{x_k\}$  converging to x. Let  $\gamma$  satisfies

$$f(x) > \gamma > \liminf_{k \to \infty} f(x_k)$$

Hence, there exists a subsequence  $\{x_{k_i}\}$  such that  $f(x_{k_i}) \leq \gamma$  for all *i*. So,  $\{x_{k_i}\} \subset V_{\gamma}$ . But  $V_{\gamma}$  is closed, *x* also belongs to  $V_{\gamma}$ . Therefore,  $f(x) \leq \gamma$ , contradiction.

(ii)  $\implies$  (iii). Assume f is lower semicontinuous. Let (x, w) be the limit of  $\{(x_k, w_k)\} \subset \operatorname{epi}(f)$ . We have  $f(x_k) \leq w_k$  for all k. Since f is lower semicontinuous, taking limit we have,

$$f(x) \le \liminf_{k \to \infty} f(x_k) \le w.$$

Hence  $(x, w) \in epif$  and so epif is closed.

(iii)  $\implies$  (i). Assume epif is closed. Let  $\{x_k\}$  be a sequence in  $V_{\gamma}$  converging to x for some  $\gamma$ . We have  $f(x_k) \leq \gamma$ , so  $(x_k, \gamma) \in \text{epi}f$  for each k. Since epif is closed and  $(x_k, \gamma) \to (x, \gamma)$ , we have  $(x, \gamma) \in \text{epi}f$ , that is  $f(x) \leq \gamma$ . Hence  $x \in V_{\gamma}$  and  $V_{\gamma}$  is closed.