
Lagrange duality

Another way to arrive at the KKT conditions, and one which gives
us some insight on solving constrained optimization problems, is
through the Lagrange dual. The dual is a maximization program in
�,⌫ — it is always concave (even when the original program is not
convex), and gives us a systematic way to lower bound the optimal
value.

The Lagrangian

We consider an optimization program of the form

minimize
x2RN

f0(x) fm(x)  0, m = 1, . . . ,M (1)

hp(x) = 0, p = 1, . . . , P.

Much of what we will say below applies equally well to nonconvex
programs as well as convex programs, so we will make it clear when
we are taking the fm to be convex and the hp to be a�ne. We
will take the domain of all of the fm and hp to be all of RN below;
this just simplifies the exposition, we can easily replace this with the
intersections of the dom fm and domhp. We will assume that the
intersection of the feasible set,

C = {x : fm(x)  0, hp(x) = 0, m = 1, . . . ,M, p = 1, . . . , P}

is a non-empty and a subset RN .
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The Lagrangian takes the constraints in the program above and
integrates them into the objective function. The Lagrangian L :
RN ⇥ RM ⇥ RP ! R associated with this optimization program
is

L(x,�,⌫) = f0(x) +
MX

m=1

�mfm(x) +
PX

p=1

⌫php(x)

The x above are referred to as primal variables, and the �,⌫ as
either dual variables or Lagrange multipliers.

The Lagrange dual function g(�,⌫) : RM ⇥ RP ! R is the
minimum of the Lagrangian over all values of x:

g(�,⌫) = inf
x2RN

 

f0(x) +
MX

m=1

�mfm(x) +
PX

p=1

⌫php(x)

!

.

Since the dual is a pointwise infimum of a family of a�ne functions
in �,⌫, g is concave regardless of whether or not the fm, hp are
convex.

The key fact about the dual function is that is it is everywhere a
lower bound on the optimal value of the original program. If p? is
the optimal value for (1), then

g(�,⌫)  p?, for all � � 0, ⌫ 2 RP .
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This is (almost too) easy to see. For any feasible point x0,

MX

m=1

�mfm(x0) +
PX

p=1

⌫php(x0)  0,

and so

L(x0,�,⌫)  f0(x0), for all � � 0, ⌫ 2 RP ,

meaning

g(�,⌫) = inf
x2RN

L(x,�,⌫)  L(x0,�,⌫)  f0(x0).

Since this holds for all feasible x0, g(�,⌫)  infx2C f0(x) = p?.

The (Lagrange) dual to the optimization program (1) is

maximize
�2RM ,⌫2RP

g(�,⌫) subject to � � 0. (2)

The dual optimal value d? is

d? = sup
��0,⌫

g(�,⌫) = sup
��0,⌫

inf
x2RN

L(x,�,⌫).

Since g(�,⌫)  p?, we know that

d?  p?.

The quantity p?� d? is called the duality gap. If p? = d?, then we
say that (1) and (2) exhibit strong duality.
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Certificates of (sub)optimality

Any dual feasible1 (�,⌫) gives us a lower bound on p?, since g(�,⌫) 
p?. If we have a primal feasible x, then we know that

f0(x)� p?  f0(x)� g(�,⌫).

We will refer to f0(x)�g(�,⌫) as the duality gap for primal/dual
(feasible) pair x,�,⌫. We know that

p? 2 [g(�,⌫), f0(x)], and likewise d? 2 [g(�,⌫), f0(x)].

If we are ever able to reduce this gap to zero, then we know that x
is primal optimal, and �,⌫ are dual optimal.

There are certain kinds of “primal-dual” algorithms that produce a
series of (feasible) points x(k),�(k),⌫(k) at every iteration. We can
then use

f0(x
(k))� g(�(k),⌫(k))  ✏,

as a stopping criteria, and know that our answer would yield an
objective value no further than ✏ from optimal.

Strong duality and the KKT conditions

Suppose that for a convex program, the primal optimal value p? an
the dual optimal value d? are equal

p? = d?.

1We simply need � � 0 for (�,⌫) to be dual feasible.
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If x? is a primal optimal point and �?,⌫? is a dual optimal point,
then we must have

f0(x
?) = g(�?,⌫?)

= inf
x2RN

 

f0(x) +
MX

m=1

�?
mfm(x) +

PX

p=1

⌫?
php(x)

!

 f0(x
?) +

MX

m=1

�?
mfm(x

?) +
PX

p=1

⌫?
php(x

?)

 f0(x
?).

The last inequality follows from the fact that �?
m � 0 (dual feasi-

bility), fm(x?)  0, and hp(x?) = 0 (primal feasibility). Since we
started out and ended up with the same thing, all of the things above
must be equal, and so

�?
mfm(x

?) = 0, m = 1, . . . ,M.

Also, since we know x? is a minimizer of L(x,�?,⌫?) (second equality
above), which is an unconstrained convex function (with �,⌫ fixed),
the gradient with respect to x must be zero:

rxL(x
?,�?,⌫?) = rf0(x

?)+
MX

m=1

�?
mrfm(x

?)+
PX

p=1

⌫?
prhp(x

?) = 0.

Thus strong duality immediately leads to the KKT conditions hold-
ing at the solution.

Also, if you can find x?,�?,⌫? that obey the KKT conditions, not
only do you know that you have a primal optimal point on your
hands, but also we have strong duality (and �?,⌫? are dual optimal).
For if KKT holds,

rxL(x
?,�?,⌫?) = 0,
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meaning that x? is a minimizer of L(x,�?,⌫?), i.e.

L(x?,�?,⌫?)  L(x,�?,⌫?),

thus

g(�?,⌫?) = L(x?,�?,⌫?)

= f0(x
?) +

MX

m=1

�?
mfm(x

?) +
PX

p=1

⌫?
php(x

?)

= f0(x
?), (by KKT),

and we have strong duality.

The upshot of this is that the conditions for strong duality are essen-
tially the same as those under which KKT is necessary.

The program (1) and its dual (2) have strong duality if the fm are
a�ne inequality constraints, or there is an x 2 RN such that for
all the fi which are not a�ne we have fi(x) < 0.
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Examples

1. Inequality LP. Calculate the dual of

minimize
x2RN

hx, ci subject to Ax  b.

Answer: The Lagrangian is

L(x,�) = hx, ci +
MX

m=1

�m (hx,ami � bm)

= cTx� �Tb + �TAx.

This is a linear functional in x — it is unbounded below unless

c +AT� = 0.

Thus

g(�) = inf
x

⇣
cTx� �Tb + �TAx

⌘
=

(
�h�, bi, c +AT� = 0

�1, otherwise.

So the Lagrange dual program is

maximize
�2RM

�h�, bi subject to AT� = �c

� � 0.
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2. Standard form LP. Calculate the dual of

minimize
x2RN

hx, ci subject to Ax = b

� � 0.
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Least-squares. Calculate the dual of

minimize
x2RN

kxk22 subject to Ax = b.

Check that the duality gap is zero.

Answer:

maximize
⌫2RM

�1

4
⌫TAAT⌫ � bT⌫
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3. Minimum norm. Calculate the dual of

minimize
x2RN

kxk subject to Ax = b,

where k · k is a general valid norm.

Answer: Use f0(x) = kxk to ease notation below. We start
with the Lagrangian:

L(x,⌫) = f0(x) +
PX

p=1

⌫p(hx,ami � bm)

= f0(x)� h⌫, bi + (AT⌫)Tx

and so

g(⌫) = �h⌫, bi + inf
x

⇣
f0(x) + (AT⌫)Tx

⌘

= �h⌫, bi � sup
x

⇣
�f0(x)� (AT⌫)Tx

⌘

= �h⌫, bi � f ⇤
0 (�AT⌫),

where f ⇤
0 is the Fenchel dual of f0:

f ?
0 (y) = sup

x
(hx,yi � f0(x)).

With f0 = k · k, we know already that

f ?
0 (y) =

(
0, kyk⇤  1,

1, otherwise
,

so

g(⌫) =

(
�h⌫, bi, kAT⌫k⇤  1

�1, otherwise
.
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Thus the dual program is

maximize
⌫2RP

� h⌫, bi subject to kAT⌫k⇤  1,

where k · k⇤ is the dual norm of k · k.
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Support vector machines

Consider the following fundamental binary classification problem.
We are given points x1, . . . ,xM 2 RN with labels y1, . . . , yM , where
ym 2 {�1,+1}. We would like to find a hyperplane (i.e. a�ne
functional) which separates the points1:

H1 and H2 above separate the points in R2, but H3 does not. To
choose among the hyperplanes which separate the points, we will
take the one with maximum margin (maximize the distance to the
closest point in either class).

To restate this, we want to find a w 2 RN and b 2 R such that

hxm,wi � b � 1, when ym = 1,
hxm,wi � b  �1, when ym = �1.

1
From Wikipedia: “Svm separating hyperplanes (SVG)” by

User:ZackWeinberg, based on PNG version by User:Cyc.
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Of course, it is possible that no separating hyperplane exists; in this
case, there will be no feasible points in the program above. It is
straightforward, though, to modify this discussion to allow “misla-
beled” points.

In the formulation above, the distance between the two (parallel)
hyperplanes2 is 2/kwk2:

Thus maximizing this distance is the same as minimizing kwk2.

We have the program

minimize
w2RN , b2R

1

2
kwk

2
2 subject to ym(b�hxm,wi)+1  0, m = 1, . . . ,M.

This is a linearly constrained quadratic program, and is clearly con-

2
From Wikipedia: “Svm max sep hyperplane with margin” by Cyc - Own

work. Licensed under Public Domain via Wikimedia Commons.
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vex. The Lagrangian is

L(w, b,�) =
1

2
kwk

2
2 +

MX

m=1

�m [ym(b � hxm,wi) + 1]

=
1

2
kwk

2
2 + b�Ty � �TXTw + �T1,

where X is the N ⇥ M matrix

X =

2

4y1x1 y2x2 · · · yMxM

3

5 .

The dual function is

g(�) = inf
w,b

✓
1

2
kwk

2
2 + b�Ty � �TXTw + �T1

◆
.

Since b is unconstrained above, we see that the presence of b�Ty
means that the dual will be �1 unless h�,yi = 0. Minimizing over
w, we need the gradient equal to zero,

rwL(w, b,�) = 0, ) w � X� = 0.

This means that we must havew = X�, which itself is a very handy
fact as it gives us a direct passage from the dual solution to the primal
solution. With these substitutions, the dual function is

g(�) =

(
1
2
kX�k

2
2 � �TXTX� + �T1, h�,yi = 0,

�1, otherwise.

The dual SVM program is then

maximize
�

�
1

2
kX�k

2
2 +

MX

m=1

�m subject to h�,yi = 0

� � 0.
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Given the solution �? above, we can take w? = X�?, and the
classifier is

f (x) = hx,w?
i � b?

= hx,X�?
i � b?

=
MX

m=1

�?
mymhx,xmi � b?.

Notice that the data xm appear only as linear functionals (i.e. inner
products with) x.

The key realization is that the for the dual program, the functional
depends on the data xm only through inner products, as

kX�k
2
2 =

MX

`=1

MX

m=1

y`ymhx`,xmi.

This means we can replace hx`,xmi with any “positive kernel func-
tion”K(x`,xm) : RN

⌦RN
! R— a positive kernel just means that

the M ⇥M matrix K(x`,xm) is in SM
+ for all choices of x1, . . . ,xM .

For example: you might take

K(x`,xm) = (1 + hx`,xmi)2 = 1 + 2hx`,xmi + hx`,xmi
2.

This means we have replaced the inner product of two vectors with
the inner product between two vectors which have been mapped into
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a higher dimensional space:

2

664

x1

x2
...
xN

3

775 !

2

666666666666666664

1
x1
...
xN

x2
1

x2
2...

x2
Np

2x1x2
...

p
2xN�1xN

3

777777777777777775

A set of linear constraints on the coordinates on the right, then,
corresponds to a second order curve constraint (parabola, ellipse,
hyperbola) on the coordinate on the left.

Many kernels are possible. The advantage is that to train and use the
classifier, you never have to explicitly move to the higher dimensional
space — you just need to be able to compute K(x`,xm) for any pair
of inputs in RN . A popular choice of kernel is

K(x`,xm) = exp
�
��kx` � xmk

2
2

�
.

This is a perfectly valid positive kernel, and it is straightforward to
compute it for any pair of inputs. But it corresponds to mapping the
xm into an infinite dimensional space, then finding a hyperplane.
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Here is an example from Wikipedia3:

3
“Kernel Machine” by Alisneaky — Own work. Licensed under CC0 via

Wikimedia Commons.
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