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1. (P.215 Q2)

h is clearly bounded on [0, 1]. Applying Theorem 1.8 of the lecture note 1 P.3, it suffices to show that
there exists ε0 > 0 such that for all partition P := a = x0 < x1 < ... < xn = b on [0, 1], we have

U(h, P )− L(h, P ) ≥ ε0

Let ε0 = 1, then for all partition P := a = x0 < x1 < ... < xn = b on [a, b]. For each 1 ≤ i ≤ n, since Q∩ [0, 1]

is dense in [0, 1], there exists (y
(i)
m )∞m=1 ⊆ Q ∩ [xi−1, xi] such that y(i)m → xi as m → ∞. Since h(x) ≤ xi + 1

on [xi−1, xi] by definition, we have
Mi(h, P ) = xi + 1

On the other hand, since (R\Q)∩ [0, 1] is dense in [0, 1], (R\Q)∩ [xi−1, xi] 6= φ, and hence h(zi) = 0 for some
zi ∈ (R\Q) ∩ [xi−1, xi]. Since h(x) ≥ 0 on [xi−1, xi] by definition, we have

mi(h, P ) = 0

Therefore,

U(h, P )− L(h, P ) =

n∑
i=1

ωi(h, P )∆xi

=

n∑
i=1

(xi + 1)(xi − xi−1)

≥
n∑
i=1

(xi − xi−1)

= xn − x0 = 1 = ε0

Therefore, h is not integrable on [0, 1].

2. (P.215 Q10)

Define h(x) = f(x) − g(x) on [a, b], then h is continuous on [a, b] (and hence Riemann integrable by Prop.
1.11 in Lecture note 1 P.5) and

´ b
a
h =
´ b
a
f −
´ b
a
g (by Prop. 1.7 of lecture note 1 P.3)= 0.

Now we prove by contradiction: suppose on the contrary for all c ∈ [a, b], f(c) 6= g(c), i.e. h(c) 6= 0.
Since h is continuous on [a, b], by Intermediate Value Theorem, either (i) h(x) > 0 for all x ∈ [a, b] or (ii)
h(x) < 0 all x ∈ [a, b].
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Case (i): applying the result of Q8 (since h is non-negative on [a, b] and
´ b
a
h = 0), we must have h(x) = 0 for

all x ∈ [a, b], which is a contradiction.

Case (ii) Let k(x) = −h(x) on [a, b]. Then apply case (i) to k(x) to derive a contradiction.

Therefore, both leads to contradiction. Hence there exists c ∈ [a, b] such that f(c) = g(c).

3. (P.215 Q11)

We first show that f ∈ R[a, b]: Since f is bounded, by Prop. 1.8 of the Lecture note, it suffices to show
that for all ε > 0, there exists a partition P := a = x0 < x1 < ... < xn = b on [a, b], we have

U(f, P )− L(f, P ) < ε

Let ε > 0 be given, choose c = a+ δ, where 0 < δ < min{ ε

4M + 1
, b− a}

Then c ∈ (a, b), and hence by the integrability of f on [c, b], there exists a partition P ′ := c = x0 <
x1 < ... < xn = b on [c, b] such that

U(f, P ′)− L(f, P ′) <
ε

2

Define a partition P on [a, b] by P := a < c < x1 < ... < xn = b. Then

U(f, P )− L(f, P ) = (sup
[a,c]

f − inf
[a,c]

f)(c− a) + U(f, P ′)− L(f, P ′)

< 2M · ε

4M + 1
+
ε

2
< ε

Since ε > 0 is arbitrary, f ∈ R[a, b].

Then we claim that
´ b
c
f →

´ b
a
f as c → a− : Given ε > 0, choose δ = min{ ε

M + 1
, b − a}. Then for

all a < c < a+ δ, since f ∈ R[a, b] and f |[c,b] ∈ R[c, b], by Prop. 1.13 of the note,

|
ˆ b

c

f −
ˆ b

a

f | = |
ˆ c

a

f |

By Prop. 1.12 (ii), |
´ c
a
f | ≤

´ c
a
|f | ≤M(c− a) < M · ε

M + 1
< ε

Therefore, for all a < c < a+ δ, |
´ b
c
f −
´ b
a
f | < ε. This shows

´ b
c
f →

´ b
a
f as c→ a− .

4. (P.215 Q18)
Since [a, b] is compact, there exists z ∈ [a, b] s.t. f(z) = sup{f(x) : x ∈ [a, b]} := S. Let ε > 0, there exists
δ > 0 s.t. |f(x)−M | ≤ ε for all x ∈ [a, b] ∩ Vδ(z). Then,

(S − ε)(2δ)1/n ≤ (

ˆ
[a,b]∩Vδ(z)

fn)1/n ≤Mn ≤ S(b− a)1/n

By sandwich theorem, we have
S − ε ≤ lim

n→∞
Mn ≤ S.

Since, ε is arbitrary, the proof is done.
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