THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2018) HW5 Solution

1. (P.215 Q2)

h is clearly bounded on $[0, 1]$. Applying Theorem 1.8 of the lecture note 1 P.3, it suffices to show that there exists $\epsilon_0 > 0$ such that for all partition $P := a = x_0 < x_1 < ... < x_n = b$ on [0, 1], we have

$$
U(h, P) - L(h, P) \ge \epsilon_0
$$

Let $\epsilon_0 = 1$, then for all partition $P := a = x_0 < x_1 < ... < x_n = b$ on $[a, b]$. For each $1 \le i \le n$, since $\mathbb{Q} \cap [0, 1]$ is dense in [0, 1], there exists $(y_m^{(i)})_{m=1}^{\infty} \subseteq \mathbb{Q} \cap [x_{i-1}, x_i]$ such that $y_m^{(i)} \to x_i$ as $m \to \infty$. Since $h(x) \leq x_i + 1$ on $[x_{i-1}, x_i]$ by definition, we have

$$
M_i(h, P) = x_i + 1
$$

On the other hand, since $(\mathbb{R}\setminus\mathbb{Q})\cap[0,1]$ is dense in $[0,1]$, $(\mathbb{R}\setminus\mathbb{Q})\cap[x_{i-1},x_i]\neq\phi$, and hence $h(z_i)=0$ for some $z_i \in (\mathbb{R} \setminus \mathbb{Q}) \cap [x_{i-1}, x_i]$. Since $h(x) \geq 0$ on $[x_{i-1}, x_i]$ by definition, we have

$$
m_i(h, P) = 0
$$

Therefore,

$$
U(h, P) - L(h, P) = \sum_{i=1}^{n} \omega_i(h, P) \Delta x_i
$$

=
$$
\sum_{i=1}^{n} (x_i + 1)(x_i - x_{i-1})
$$

$$
\geq \sum_{i=1}^{n} (x_i - x_{i-1})
$$

=
$$
x_n - x_0 = 1 = \epsilon_0
$$

Therefore, h is not integrable on $[0, 1]$.

2. (P.215 Q10)

Define $h(x) = f(x) - g(x)$ on [a, b], then h is continuous on [a, b] (and hence Riemann integrable by Prop. 1.11 in Lecture note 1 P.5) and $\int_a^b h = \int_a^b f - \int_a^b g$ (by Prop. 1.7 of lecture note 1 P.3)= 0.

Now we prove by contradiction: suppose on the contrary for all $c \in [a, b]$, $f(c) \neq g(c)$, i.e. $h(c) \neq 0$. Since h is continuous on [a, b], by Intermediate Value Theorem, either (i) $h(x) > 0$ for all $x \in [a, b]$ or (ii) $h(x) < 0$ all $x \in [a, b]$.

Case (i): applying the result of Q8 (since h is non-negative on [a, b] and $\int_a^b h = 0$), we must have $h(x) = 0$ for all $x \in [a, b]$, which is a contradiction.

Case (ii) Let $k(x) = -h(x)$ on [a, b]. Then apply case (i) to $k(x)$ to derive a contradiction.

Therefore, both leads to contradiction. Hence there exists $c \in [a, b]$ such that $f(c) = g(c)$.

3. (P.215 Q11)

We first show that $f \in R[a, b]$: Since f is bounded, by Prop. 1.8 of the Lecture note, it suffices to show that for all $\epsilon > 0$, there exists a partition $P := a = x_0 < x_1 < ... < x_n = b$ on [a, b], we have

$$
U(f, P) - L(f, P) < \epsilon
$$

Let $\epsilon > 0$ be given, choose $c = a + \delta$, where $0 < \delta < \min\{\frac{\epsilon}{\epsilon, \epsilon\}}$ $\frac{c}{4M+1}, b-a$

Then $c \in (a, b)$, and hence by the integrability of f on $[c, b]$, there exists a partition $P' := c = x_0$ $x_1 < \ldots < x_n = b$ on $[c, b]$ such that

$$
U(f, P') - L(f, P') < \frac{\epsilon}{2}
$$

Define a partition P on [a, b] by $P := a < c < x_1 < \ldots < x_n = b$. Then

$$
U(f, P) - L(f, P) = \left(\sup_{[a,c]} f - \inf_{[a,c]} f\right)(c - a) + U(f, P') - L(f, P')
$$

<
$$
< 2M \cdot \frac{\epsilon}{4M + 1} + \frac{\epsilon}{2}
$$

<
$$
< \epsilon
$$

Since $\epsilon > 0$ is arbitrary, $f \in R[a, b]$.

Then we claim that $\int_c^b f \to \int_a^b f$ as $c \to a^-$: Given $\epsilon > 0$, choose $\delta = \min\{\frac{\epsilon}{M}$. $\frac{c}{M+1}, b-a$. Then for all $a < c < a + \delta$, since $f \in R[a, b]$ and $f|_{[c, b]} \in R[c, b]$, by Prop. 1.13 of the note,

$$
\left|\int_{c}^{b} f - \int_{a}^{b} f\right| = \left|\int_{a}^{c} f\right|
$$

By Prop. 1.12 (ii), $|\int_a^c f| \leq \int_a^c |f| \leq M(c-a) < M \cdot \frac{\epsilon}{M}$ $\frac{c}{M+1} < \epsilon$ Therefore, for all $a < c < a + \delta$, $|\int_c^b f - \int_a^b f| < \epsilon$. This shows $\int_c^b f \to \int_a^b f$ as $c \to a^-$.

4. (P.215 Q18)

Since [a, b] is compact, there exists $z \in [a, b]$ s.t. $f(z) = \sup\{f(x) : x \in [a, b]\} := S$. Let $\epsilon > 0$, there exists $\delta > 0$ s.t. $|f(x) - M| \leq \epsilon$ for all $x \in [a, b] \cap V_{\delta}(z)$. Then,

$$
(S - \epsilon)(2\delta)^{1/n} \le (\int_{[a,b] \cap V_{\delta}(z)} f^n)^{1/n} \le M_n \le S(b-a)^{1/n}
$$

By sandwich theorem, we have

$$
S - \epsilon \le \lim_{n \to \infty} M_n \le S.
$$

Since, ϵ is arbitrary, the proof is done.