2019 Fall MMAT 5010 Linear Analysis

p-105: 1,5

Solution 2

1. Show that the following sets are closed subspaces of their respective spaces:

(a)
(b)
()

{(a;) € >°:ay =0},
{(a;) €€*: a1 =a3 AND ag = Y o0, a;/i },
{feC]o1] fo f=0}

Solution.

(a)

Let A={(a;)) €l>®:ay=0}.
First, we check that A is a subspace of £*°. Let A € K and z,y € A. We are
going to show that
(i) v+y €A,
(ii) Az € A.
We may clarify the notation x and y here. Note that z,y are elements of A, and

hence elements of ¢*°. That means z,y are sequences of numbers. We denote
by x(i) and y(7) the (i + 1)th entry of the sequences x and y respectively.

Now, A is the set of £*°-sequences such that its first entry is 0.

The first entry of the sequence x+y is by definition (x+y)(0) = 2:(0)+y(0) = 0.
This shows (i).

The first entry of Az is by definiton Az(0) = 0. This shows (ii).

To see that A is closed, suppose (z,,) is a sequence in A and (z,) converges to
some x € (. It suffices to show that © € A. Note that for every n € N,

|2(0)] = [2(0) = 2n(0)] < S (k) — 2n (k)] = [l = 2|~

Asn — o0, ||& — x,]lge — 0 and hence we can conclude that |z(0)| < 0. This
shows z(0) = 0 and hence x € A.

Let B={(a;) € *:a1 =a3 AND ag = Y 10, a;/i }.

We only show that B is closed. Suppose (x,) is a sequence in B and (z,,)
converges to some x € (2. It suffices to show that z € B.

First, we claim that z(i) = nhi& x, (1) for each fixed i. Note that

o0

(1) — 2 (i)] < Zlﬂf —wn(F)]? = [l — 2.

By the convergence of x,, to z in £?, we see that x(i) = lim z,(7).
n—oo



In particular, this gives us that z(1) = lim z,(1) = lim z,(3) = z(3). The
n—o0 n—oo

second equality holds because every z,, is an element in B.
o0

It remains to show that z(0) = Z:B(Z)/Z To do so, let € > 0, we would like

i=1
to check that for any sufficiently large N € N, we have

N
>
=1

For any n, N € N, we have
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We now estimate the bound for (I), (IT), (III). For (I), we can fix a large n € N
such that (I) < €¢/3. For (II), when n is fixed and N goes to infinity, (II) will

go to 0, due to x,(0) = Z Zu(i) . For (III), and for each fixed N, (III) is small
l
i=1
when n is large, but it is not what we want. We should fix an n € N and let
N go to infinity. Thus, we need a better estimation for (III).

IN

By the calculation, (IIT) can be well-controlled when n is sufficiently large and
this bound is independent of N. To conclude, for an ¢ > 0, we can fix a
sufficiently large n such that both (I), (III) < €/3, independent of N. For this
fixed n, there is some Ny € N such that (II) < ¢/3 when N > N,. Therefore,

N
>
=1

<)+ ({II)+(III)<e  when N > N,.
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Finally, we check that Z (—) < 00. Note that for every N € N,
i
i=1

(1) = (3) () o (3)

1=
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In the last equality, the sum telescopes.

(¢) Let C={fecClo,1]: [ f=0}
We only show that C' is closed in C[0, 1]. Suppose that (f,) is a sequence in C
and converges to some f € C[0,1]. It suffices to show that f € C.

Recall that the norm on C0, 1] is the supnorm,

Le. [lgllcpy = Sl[lp] |9(x)| for g € C[0, 1].
z€[0,1

Since f, € C, we have fol fn =0 for all n. Note then
1 1 1
/ f' [ =[5
0 0 0

1
0

1
S/ 1f = fallew.y
0
= [If = fallewy
Since lim || f — fullca) = 0, we have fol f =0 and therefore f € C.
n—oo

5. The continuity of + and A- imply that AA = A and A+ B C A+ B. Find an
example to show that equality need not necessarily hold.

Solution.

Let A, B be nonempty sets.

If A =0, then NA = {0} = {0} and AA = {0}, i.e. XA = \A.
For \ # 0, we first show that NA C \A.

The continuity of scalar multiplication, according to Proposition 7.8 of our textbook,
means that if (\,) and (x,) are sequences of scalars and vectors with \,, converging
to A and z,, converging to x, then \,x, converges to A\z.

Pick any element in AA. It can be written as Az for some x € A. That is, we can
find a sequence (x,) in A such that x,, converges to z. By the continuity of scalar
multiplication, we see that

lim (Az,) = (lim A) (lim z,) = A\z.

n—oo n—0o0 n—0o0



This shows that Az is the limit of the sequence (Az,) in AA. Therefore, Az € AA.
The above gives us AA C \A.

The other way round, let y € AA. Then, y is the limit of a sequence (Az,) with
xn, € A. Since A # 0, by the continuity of scalar multiplication,

: 1 :
= i 3 D) = 3 A = 3w

1 — 1 —
This shows that 1Y € A and therefore, y = /\(Xy) € M\A.

We have obtained AA = MA for nonzero \.

Continuity of vector addition tells us that if (z,) and (y,) are sequences of vectors
with limit = and y respectively, then x,, + vy, converges to x + .

To see that A+ B C A+ B, let a € A and b € B. There exists two sequences (a, )
in A and (b,) in B with limits a and b respectively. By the continuity of vector
addition,

lim (a, + b,) = lim a, + lim b, = a+b.
n—00 n—00 n—00

This shows that a+b is the limit of a sequence in A+ B. That sequence is (a, +by,).
Therefore, a +b € A+ B.

For an example of A, B with A+ B C A+ B. Let

A = {n—-1/meR:n=2.3,...}
B = {neR:n=-1,-2,...}

We now argue that A is a closed set. Suppose zj is a limit point of A. Then, there
are infinitely many points z € A such that 0 < |z — 29| < 1/2. Let 21, 22 be two
such points and z; # z3, then by triangle inequality,

1 1
’21—22|§|21—ZQ|+|22—Z()|<§+§:1.

Note then if z1,29 € A with |27 — 23] < 1, then z; = 2. This contradicts to our
assumption z; # zo. Therefore, A has no limit points and A itself is a closed set.
Similarly, one can show that B is closed.

Finally, we argue that 0 € A+ B but 0 ¢ A + B.
For 0 € A+ B, Let (z,) = (n+1—1/(n+1)), (yn) = (—n — 1) be sequences in

A and B respectively. (z, +y,) = (—=1/(n+ 1)) is a sequence in A + B with limit
equal to 0.

For 0 ¢ A +E, we have argued that A, B are closed sets, i.e. A=A and B = B.
Suppose 0 € A+ B. We have

1
n -+

n+1-—

—m =0 for some n,m € N.

That is, n+1—m =1/(n +1). From RHS, we see that n + 1 —m is a number in
(0,1/2], but n+ 1 — m is an integer. This shows that 0 ¢ A + B.



