
2019 Fall MMAT 5010 Linear Analysis

Solution 2

p.105: 1, 5

1. Show that the following sets are closed subspaces of their respective spaces:

(a) { (ai) ∈ `∞ : a0 = 0 },
(b) { (ai) ∈ `2 : a1 = a3 AND a0 =

∑∞
i=1 ai/i },

(c) { f ∈ C[0, 1] :
∫ 1

0
f = 0 }.

Solution.

(a) Let A = { (ai) ∈ `∞ : a0 = 0 }.
First, we check that A is a subspace of `∞. Let λ ∈ K and x, y ∈ A. We are
going to show that

(i) x+ y ∈ A,

(ii) λx ∈ A.

We may clarify the notation x and y here. Note that x, y are elements of A, and
hence elements of `∞. That means x, y are sequences of numbers. We denote
by x(i) and y(i) the (i+ 1)th entry of the sequences x and y respectively.

Now, A is the set of `∞-sequences such that its first entry is 0.

The first entry of the sequence x+y is by definition (x+y)(0) = x(0)+y(0) = 0.
This shows (i).

The first entry of λx is by definiton λx(0) = 0. This shows (ii).

To see that A is closed, suppose (xn) is a sequence in A and (xn) converges to
some x ∈ `∞. It suffices to show that x ∈ A. Note that for every n ∈ N,

|x(0)| = |x(0)− xn(0)| ≤ sup
0≤k<∞

|x(k)− xn(k)| = ‖x− xn‖`∞ .

As n→∞, ‖x− xn‖`∞ → 0 and hence we can conclude that |x(0)| ≤ 0. This
shows x(0) = 0 and hence x ∈ A.

(b) Let B = { (ai) ∈ `2 : a1 = a3 AND a0 =
∑∞

i=1 ai/i }.
We only show that B is closed. Suppose (xn) is a sequence in B and (xn)
converges to some x ∈ `2. It suffices to show that x ∈ B.

First, we claim that x(i) = lim
n→∞

xn(i) for each fixed i. Note that

|x(i)− xn(i)| ≤

√√√√ ∞∑
k=0

|x(k)− xn(k)|2 = ‖x− xn‖`2 .

By the convergence of xn to x in `2, we see that x(i) = lim
n→∞

xn(i).
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In particular, this gives us that x(1) = lim
n→∞

xn(1) = lim
n→∞

xn(3) = x(3). The

second equality holds because every xn is an element in B.

It remains to show that x(0) =
∞∑
i=1

x(i)/i. To do so, let ε > 0, we would like

to check that for any sufficiently large N ∈ N, we have∣∣∣∣∣x(0)−
N∑
i=1

x(i)

i

∣∣∣∣∣ < ε.

For any n,N ∈ N, we have∣∣∣∣∣x(0)−
N∑
i=1

x(i)

i

∣∣∣∣∣ ≤ |x(0)− xn(0)|+

∣∣∣∣∣xn(0)−
N∑
i=1

xn(i)

i

∣∣∣∣∣+
∣∣∣∣∣

N∑
i=1

xn(i)

i
−

N∑
i=1

x(i)

i

∣∣∣∣∣
Let

(I) = |x(0)− xn(0)|,

(II) =

∣∣∣∣∣xn(0)−
N∑
i=1

xn(i)

i

∣∣∣∣∣,
(III) =

∣∣∣∣∣
N∑
i=1

xn(i)

i
−

N∑
i=1

x(i)

i

∣∣∣∣∣.
We now estimate the bound for (I), (II), (III). For (I), we can fix a large n ∈ N
such that (I) < ε/3. For (II), when n is fixed and N goes to infinity, (II) will

go to 0, due to xn(0) =
∞∑
i=1

xn(i)

i
. For (III), and for each fixed N , (III) is small

when n is large, but it is not what we want. We should fix an n ∈ N and let
N go to infinity. Thus, we need a better estimation for (III).∣∣∣∣∣

N∑
i=1

xn(i)

i
−

N∑
i=1

x(i)

i

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

1

i
(xn(i)− x(i))

∣∣∣∣∣
≤

√√√√ N∑
i=1

(
1

i

)2

√√√√ N∑
i=1

|x(i)− xn(i)|2

≤ C‖x− xn‖`2 , where C :=

√√√√ ∞∑
i=1

(
1

i

)2

By the calculation, (III) can be well-controlled when n is sufficiently large and
this bound is independent of N . To conclude, for an ε > 0, we can fix a
sufficiently large n such that both (I), (III) < ε/3, independent of N . For this
fixed n, there is some N0 ∈ N such that (II) < ε/3 when N ≥ N0. Therefore,∣∣∣∣∣x(0)−

N∑
i=1

x(i)

i

∣∣∣∣∣ ≤ (I) + (II) + (III) < ε, when N ≥ N0.
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Finally, we check that
∞∑
i=1

(
1

i

)2

<∞. Note that for every N ∈ N,

N∑
i=1

(
1

i

)2

= 1 +

(
1

2

)2

+

(
1

3

)2

+ . . .+

(
1

N

)2

≤ 1 +
1

1× 2
+

1

2× 3
+ . . .+

1

(N − 1)N

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . .+

(
1

N − 1
− 1

N

)
= 2− 1

N
≤ 2

In the last equality, the sum telescopes.

(c) Let C = { f ∈ C[0, 1] :
∫ 1

0
f = 0 }.

We only show that C is closed in C[0, 1]. Suppose that (fn) is a sequence in C
and converges to some f ∈ C[0, 1]. It suffices to show that f ∈ C.

Recall that the norm on C[0, 1] is the supnorm,

i.e. ‖g‖C[0,1] = sup
x∈[0,1]

|g(x)| for g ∈ C[0, 1].

Since fn ∈ C, we have
∫ 1

0
fn = 0 for all n. Note then∣∣∣∣∫ 1

0

f

∣∣∣∣ =

∣∣∣∣∫ 1

0

f −
∫ 1

0

fn

∣∣∣∣
≤
∫ 1

0

|f − fn|

≤
∫ 1

0

‖f − fn‖C[0,1]

= ‖f − fn‖C[0,1]

Since lim
n→∞

‖f − fn‖C[0,1] = 0, we have
∫ 1

0
f = 0 and therefore f ∈ C.

5. The continuity of + and λ · imply that λA = λA and A + B ⊆ A+B. Find an
example to show that equality need not necessarily hold.

Solution.

Let A,B be nonempty sets.

If λ = 0, then λA = {0} = {0} and λA = {0}, i.e. λA = λA.

For λ 6= 0, we first show that λA ⊆ λA.

The continuity of scalar multiplication, according to Proposition 7.8 of our textbook,
means that if (λn) and (xn) are sequences of scalars and vectors with λn converging
to λ and xn converging to x, then λnxn converges to λx.

Pick any element in λA. It can be written as λx for some x ∈ A. That is, we can
find a sequence (xn) in A such that xn converges to x. By the continuity of scalar
multiplication, we see that

lim
n→∞

(λxn) = ( lim
n→∞

λ) ( lim
n→∞

xn) = λx.
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This shows that λx is the limit of the sequence (λxn) in λA. Therefore, λx ∈ λA.
The above gives us λA ⊆ λA.

The other way round, let y ∈ λA. Then, y is the limit of a sequence (λxn) with
xn ∈ A. Since λ 6= 0, by the continuity of scalar multiplication,

lim
n→∞

xn = lim
n→∞

1

λ
(λxn) =

1

λ
lim
n→∞

λxn =
1

λ
y.

This shows that
1

λ
y ∈ A and therefore, y = λ(

1

λ
y) ∈ λA.

We have obtained λA = λA for nonzero λ.

Continuity of vector addition tells us that if (xn) and (yn) are sequences of vectors
with limit x and y respectively, then xn + yn converges to x+ y.

To see that A+ B ⊆ A+B, let a ∈ A and b ∈ B. There exists two sequences (an)
in A and (bn) in B with limits a and b respectively. By the continuity of vector
addition,

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = a+ b.

This shows that a+b is the limit of a sequence in A+B. That sequence is (an +bn).
Therefore, a+ b ∈ A+B.

For an example of A,B with A+B ( A+B. Let

A = {n− 1/n ∈ R : n = 2, 3, . . .}
B = {n ∈ R : n = −1,−2, . . .}

We now argue that A is a closed set. Suppose z0 is a limit point of A. Then, there
are infinitely many points z ∈ A such that 0 < |z − z0| < 1/2. Let z1, z2 be two
such points and z1 6= z2, then by triangle inequality,

|z1 − z2| ≤ |z1 − z0|+ |z2 − z0| <
1

2
+

1

2
= 1.

Note then if z1, z2 ∈ A with |z1 − z2| < 1, then z1 = z2. This contradicts to our
assumption z1 6= z2. Therefore, A has no limit points and A itself is a closed set.
Similarly, one can show that B is closed.

Finally, we argue that 0 ∈ A+B but 0 /∈ A+B.

For 0 ∈ A+B, Let (xn) = (n + 1 − 1/(n + 1)), (yn) = (−n − 1) be sequences in
A and B respectively. (xn + yn) = (−1/(n + 1)) is a sequence in A + B with limit
equal to 0.

For 0 /∈ A + B, we have argued that A,B are closed sets, i.e. A = A and B = B.
Suppose 0 ∈ A+B. We have

n+ 1− 1

n+ 1
−m = 0 for some n,m ∈ N.

That is, n + 1−m = 1/(n + 1). From RHS, we see that n + 1−m is a number in
(0, 1/2], but n+ 1−m is an integer. This shows that 0 /∈ A+B.


