Solution 2

p.105: 1, 5

- 1. Show that the following sets are closed subspaces of their respective spaces:
	- (a) $\{ (a_i) \in \ell^{\infty} : a_0 = 0 \},\$
	- (b) { $(a_i) \in \ell^2 : a_1 = a_3$ AND $a_0 = \sum_{i=1}^{\infty} a_i/i$ },
	- (c) { $f \in C[0,1] : \int_0^1 f = 0$ }.

Solution.

(a) Let $A = \{ (a_i) \in \ell^{\infty} : a_0 = 0 \}.$

First, we check that A is a subspace of ℓ^{∞} . Let $\lambda \in \mathbb{K}$ and $x, y \in A$. We are going to show that

(i) $x + y \in A$,

(ii)
$$
\lambda x \in A
$$
.

We may clarify the notation x and y here. Note that x, y are elements of A, and hence elements of ℓ^{∞} . That means x, y are sequences of numbers. We denote by $x(i)$ and $y(i)$ the $(i + 1)$ th entry of the sequences x and y respectively.

Now, A is the set of ℓ^{∞} -sequences such that its first entry is 0.

The first entry of the sequence $x+y$ is by definition $(x+y)(0) = x(0)+y(0) = 0$. This shows (i).

The first entry of λx is by definiton $\lambda x(0) = 0$. This shows (ii).

To see that A is closed, suppose (x_n) is a sequence in A and (x_n) converges to some $x \in \ell^{\infty}$. It suffices to show that $x \in A$. Note that for every $n \in \mathbb{N}$,

$$
|x(0)| = |x(0) - x_n(0)| \le \sup_{0 \le k < \infty} |x(k) - x_n(k)| = ||x - x_n||_{\ell^{\infty}}.
$$

As $n \to \infty$, $||x - x_n||_{\ell^{\infty}} \to 0$ and hence we can conclude that $|x(0)| \leq 0$. This shows $x(0) = 0$ and hence $x \in A$.

(b) Let $B = \{ (a_i) \in \ell^2 : a_1 = a_3 \text{ AND } a_0 = \sum_{i=1}^{\infty} a_i / i \}.$ We only show that B is closed. Suppose (x_n) is a sequence in B and (x_n) converges to some $x \in \ell^2$. It suffices to show that $x \in B$. First, we claim that $x(i) = \lim_{n \to \infty} x_n(i)$ for each fixed i. Note that

$$
|x(i) - x_n(i)| \le \sqrt{\sum_{k=0}^{\infty} |x(k) - x_n(k)|^2} = ||x - x_n||_{\ell^2}.
$$

By the convergence of x_n to x in ℓ^2 , we see that $x(i) = \lim_{n \to \infty} x_n(i)$.

In particular, this gives us that $x(1) = \lim_{n \to \infty} x_n(1) = \lim_{n \to \infty} x_n(3) = x(3)$. The second equality holds because every x_n is an element in B .

It remains to show that $x(0) = \sum_{n=0}^{\infty}$ $i=1$ $x(i)/i$. To do so, let $\epsilon > 0$, we would like to check that for any sufficiently large $N \in \mathbb{N}$, we have

$$
\left| x(0) - \sum_{i=1}^{N} \frac{x(i)}{i} \right| < \epsilon.
$$

For any $n, N \in \mathbb{N}$, we have

$$
\left| x(0) - \sum_{i=1}^{N} \frac{x(i)}{i} \right| \leq |x(0) - x_n(0)| + \left| x_n(0) - \sum_{i=1}^{N} \frac{x_n(i)}{i} \right| + \left| \sum_{i=1}^{N} \frac{x_n(i)}{i} - \sum_{i=1}^{N} \frac{x(i)}{i} \right|
$$

Let

$$
(I) = |x(0) - x_n(0)|,
$$

\n
$$
(II) = \left| x_n(0) - \sum_{i=1}^N \frac{x_n(i)}{i} \right|,
$$

\n
$$
(III) = \left| \sum_{i=1}^N \frac{x_n(i)}{i} - \sum_{i=1}^N \frac{x(i)}{i} \right|.
$$

We now estimate the bound for (I), (II), (III). For (I), we can fix a large $n \in \mathbb{N}$ such that $(I) < \epsilon/3$. For (II) , when n is fixed and N goes to infinity, (II) will go to 0, due to $x_n(0) = \sum_{n=0}^{\infty}$ $i=1$ $x_n(i)$ i . For (III) , and for each fixed N , (III) is small when n is large, but it is not what we want. We should fix an $n \in \mathbb{N}$ and let N go to infinity. Thus, we need a better estimation for (III).

$$
\left| \sum_{i=1}^{N} \frac{x_n(i)}{i} - \sum_{i=1}^{N} \frac{x(i)}{i} \right| = \left| \sum_{i=1}^{N} \frac{1}{i} (x_n(i) - x(i)) \right|
$$

$$
\leq \sqrt{\sum_{i=1}^{N} \left(\frac{1}{i} \right)^2} \sqrt{\sum_{i=1}^{N} |x(i) - x_n(i)|^2}
$$

$$
\leq C \|x - x_n\|_{\ell^2}, \text{ where } C := \sqrt{\sum_{i=1}^{\infty} \left(\frac{1}{i} \right)^2}
$$

By the calculation, (III) can be well-controlled when n is sufficiently large and this bound is independent of N. To conclude, for an $\epsilon > 0$, we can fix a sufficiently large *n* such that both (I), (III) $\lt \epsilon/3$, independent of *N*. For this fixed n, there is some $N_0 \in \mathbb{N}$ such that $(II) < \epsilon/3$ when $N \ge N_0$. Therefore,

$$
\left|x(0) - \sum_{i=1}^{N} \frac{x(i)}{i}\right| \le (I) + (II) + (III) < \epsilon, \quad \text{when } N \ge N_0.
$$

Finally, we check that $\sum_{n=1}^{\infty}$ $i=1$ $\sqrt{1}$ i \setminus^2 $< \infty$. Note that for every $N \in \mathbb{N}$,

$$
\sum_{i=1}^{N} \left(\frac{1}{i}\right)^2 = 1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{N}\right)^2
$$

\n
$$
\leq 1 + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(N-1)N}
$$

\n
$$
= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{N-1} - \frac{1}{N}\right)
$$

\n
$$
= 2 - \frac{1}{N} \leq 2
$$

In the last equality, the sum telescopes.

(c) Let $C = \{ f \in C[0,1] : \int_0^1 f = 0 \}.$

We only show that C is closed in $C[0, 1]$. Suppose that (f_n) is a sequence in C and converges to some $f \in C[0, 1]$. It suffices to show that $f \in C$. Recall that the norm on $C[0, 1]$ is the supnorm, i.e. $||g||_{C[0,1]} = \sup |g(x)| \text{ for } g \in C[0,1].$

e.
$$
||g||C[0,1] - \sup_{x \in [0,1]} |g(x)|
$$
 for $g \in C$

Since $f_n \in C$, we have $\int_0^1 f_n = 0$ for all *n*. Note then

$$
\left| \int_0^1 f \right| = \left| \int_0^1 f - \int_0^1 f_n \right|
$$

\n
$$
\leq \int_0^1 |f - f_n|
$$

\n
$$
\leq \int_0^1 \|f - f_n\|_{C[0,1]}
$$

\n
$$
= \|f - f_n\|_{C[0,1]}
$$

Since $\lim_{n\to\infty} ||f - f_n||_{C[0,1]} = 0$, we have $\int_0^1 f = 0$ and therefore $f \in C$.

5. The continuity of + and λ · imply that $\overline{\lambda}A = \lambda\overline{A}$ and $\overline{A} + \overline{B} \subseteq \overline{A+B}$. Find an example to show that equality need not necessarily hold.

Solution.

Let A, B be nonempty sets.

If $\lambda = 0$, then $\overline{\lambda}A = \overline{\{0\}} = \{0\}$ and $\lambda \overline{A} = \{0\}$, i.e. $\overline{\lambda}A = \lambda \overline{A}$.

For $\lambda \neq 0$, we first show that $\lambda \overline{A} \subseteq \overline{\lambda A}$.

The continuity of scalar multiplication, according to Proposition 7.8 of our textbook, means that if (λ_n) and (x_n) are sequences of scalars and vectors with λ_n converging to λ and x_n converging to x, then $\lambda_n x_n$ converges to λx .

Pick any element in $\lambda \overline{A}$. It can be written as λx for some $x \in \overline{A}$. That is, we can find a sequence (x_n) in A such that x_n converges to x. By the continuity of scalar multiplication, we see that

$$
\lim_{n \to \infty} (\lambda x_n) = (\lim_{n \to \infty} \lambda) (\lim_{n \to \infty} x_n) = \lambda x.
$$

This shows that λx is the limit of the sequence (λx_n) in λA . Therefore, $\lambda x \in \lambda A$. The above gives us $\lambda \overline{A} \subseteq \lambda A$.

The other way round, let $y \in \overline{\lambda}A$. Then, y is the limit of a sequence (λx_n) with $x_n \in A$. Since $\lambda \neq 0$, by the continuity of scalar multiplication,

$$
\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{\lambda} (\lambda x_n) = \frac{1}{\lambda} \lim_{n \to \infty} \lambda x_n = \frac{1}{\lambda} y.
$$

This shows that $\frac{1}{2}$ λ $y \in \overline{A}$ and therefore, $y = \lambda(\frac{1}{\lambda})$ λ $y) \in \lambda \overline{A}.$

We have obtained $\overline{\lambda} \overline{A} = \lambda \overline{A}$ for nonzero λ .

Continuity of vector addition tells us that if (x_n) and (y_n) are sequences of vectors with limit x and y respectively, then $x_n + y_n$ converges to $x + y$.

To see that $\overline{A} + \overline{B} \subseteq \overline{A + B}$, let $a \in \overline{A}$ and $b \in \overline{B}$. There exists two sequences (a_n) in A and (b_n) in B with limits a and b respectively. By the continuity of vector addition,

$$
\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b.
$$

This shows that $a+b$ is the limit of a sequence in $A+B$. That sequence is (a_n+b_n) . Therefore, $a + b \in A + B$.

For an example of A, B with $\overline{A} + \overline{B} \subsetneq \overline{A + B}$. Let

$$
A = \{n - 1/n \in \mathbb{R} : n = 2, 3, \ldots\}
$$

$$
B = \{n \in \mathbb{R} : n = -1, -2, \ldots\}
$$

We now argue that A is a closed set. Suppose z_0 is a limit point of A. Then, there are infinitely many points $z \in A$ such that $0 < |z - z_0| < 1/2$. Let z_1, z_2 be two such points and $z_1 \neq z_2$, then by triangle inequality,

$$
|z_1 - z_2| \le |z_1 - z_0| + |z_2 - z_0| < \frac{1}{2} + \frac{1}{2} = 1.
$$

Note then if $z_1, z_2 \in A$ with $|z_1 - z_2| < 1$, then $z_1 = z_2$. This contradicts to our assumption $z_1 \neq z_2$. Therefore, A has no limit points and A itself is a closed set. Similarly, one can show that B is closed.

Finally, we argue that $0 \in \overline{A+B}$ but $0 \notin \overline{A} + \overline{B}$.

For $0 \in \overline{A+B}$, Let $(x_n) = (n+1-1/(n+1)), (y_n) = (-n-1)$ be sequences in A and B respectively. $(x_n + y_n) = (-1/(n+1))$ is a sequence in $A + B$ with limit equal to 0.

For $0 \notin \overline{A} + \overline{B}$, we have argued that A, B are closed sets, i.e. $\overline{A} = A$ and $\overline{B} = B$. Suppose $0 \in \overline{A} + \overline{B}$. We have

$$
n+1 - \frac{1}{n+1} - m = 0 \quad \text{for some } n, m \in \mathbb{N}.
$$

That is, $n + 1 - m = 1/(n + 1)$. From RHS, we see that $n + 1 - m$ is a number in $(0, 1/2]$, but $n + 1 - m$ is an integer. This shows that $0 \notin \overline{A} + \overline{B}$.