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Abstract 

Classical examples of surfaces are given by hypersurfaces and complete inter-

sections in projective spaces, double coverings of P̂  branched along sextic curves 

and the famous Kummer surfaces. In this report, we will consider the higher di-

mensional analog of these constructions, namely, of Calabi-Yau manifolds. Firstly 

we construct Calabi-Yau manifolds as hypersurfaces and complete intersections 

in toric varieties, following Batyrev and Borisov. This generalizes Calabi-Yau hy-

persurfaces and complete intersections in projective spaces, product of projective 

spaces and weighted projective spaces. Next we construct Calabi-Yau manifolds 

by quotient. In particular, we look into the possibility of generalizing the Kummer 

construction of K3 surfaces, following Roan. Finally, we construct Calabi-Yau 

manifolds by coverings. The emphasis is on the construction of Calabi-Yau 3-

folds as double coverings of P̂  branched along octic surfaces, following Cynk. 

Moreover we will try to investigate further properties, e.g. modularity, of the 

Calabi-Yau manifolds we constructed. 

> 
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摘要 

K3曲面的經典例子包括投影空間中的超曲面及完全交，沿六次曲線分歧的二維 

投影空間的二重覆蓋，及有名的Kummer曲面。於本報告中，我們將考慮這些構 

造的高維推廣，即Calabi-Yau流形的構造。首先我們參照Batyrev與Borisov的 

做法，把Calabi-Yau構作成環族(toric varieties)中的超曲面及完全交，這推廣了 

投影空間，投影空間的積及權投影空間(weighted projective spaces)中的Calabi-Yau 

超曲面及完全交。然後，我們把Calabi-Yau流形構作成商，其中，我們會依照 

Roan的想法，探討推廣Kummer曲面的構造的可能性。最後，我們用覆蓋來構 

造Calabi-Yau流形，並跟隨Cynk，重點考慮三維投影空間的沿八次曲面分歧的 

二重覆蓋。另外，我們亦會嘗試研究我們所構造的Calabi-Yau流形的其他性質， 

例如模性。 

I 
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Introduction 

An n-dimensional Calabi- Yau manifold is a compact Kahler manifold V of com-

plex dimension n such that the canonical bundle Kx is trivial and = 

dim{H^{V, ^y)) = 0 for 1 < fc < n. In the past two decades, Calabi-Yau mani-

folds (or varieties) have continued to be a topic of intensive research. Motivations 

for such an investigation came from both the mathematical and physical sides. 

For mathematicians, one of the main reasons for studying Calabi-Yau varieties 

is that they are a key ingredient in The Mori Program, a vast project which is 

designed to accomplish the classification of all complex projective varieties. On 

the other hand, the interest of physicists mainly came from the connection be-

tween Calabi-Yau 3-folds and the so-called Superstring Theory. One of the many 

far-reaching consequences of this connection is a duality for Calabi-Yau 3-folds 

called The Mirror Symmetry. This, in particular, asserts that for any Calabi-Yau 

3-fold V, there exists another Calabi-Yau 3-fold V, called the mirror of V; and 

that the Hodge numbers of V and V' satisfy the equalities: 

These are very surprising and incredible from the mathematical viewpoint. Nev-

ertheless, there has been increasing evidence in support of The Mirror Symmetry. 

To test The Mirror Symmetry or The Mori Program or any other theories 

concerning Calabi-Yau manifolds, we should have enough examples of Calabi-

Yau manifolds. Hence in this report, we are going to give some constructions 

of Calabi-Yau manifolds. Following the classical examples of K3 surfaces, which 

should be considered as 2-dimensional Calabi-Yau manifolds, we shall construct 

Calabi-Yau manifolds first as hypersurfaces and complete intersections in toric 

varieties in Chapter 2. This generalizes hypersurfaces and complete intersections 

in projective spaces, product of projective spaces and weighted projective spaces. 
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Then in Chapter 3，we shall consider the higher dimensional analog of Kummer 

surfaces, constructing Calabi-Yau manifolds by taking quotients. This will give 

examples of rigid Calabi-Yau 3-folds with complex multiplications. The final 

Chapter 4 is concerned with exhibiting Calabi-Yau manifolds as coverings. Our 

focus is on double coverings of P^ branched along octic surfaces and we will try to 

discuss the modularity of these double octics. The first chapter on toric geometry 

is mainly for reference and notation fixing. 

) 



Chapter 1 

Introduction to Toric Geometry 

In this chapter we present some results in toric geometry, which will be of use 

later. They are stated without proofs. For details please refer to [14]’ [19], [25 . 

1.1 Definitions of Toric Varieties 

First we recall the definition of toric varieties. Let A/‘ = Z" be a lattice (i.e. a 

free Z-module) of rank n>l]M = Homz(A^, Z) its dual and〈.，•〉： A/" x M 一 Z 

the dual pairing. ‘ 

Definition 1.1.1. Let N议A/'^^R and M狀:=M(g)zR. Then the dual pairing 

naturally extends to {•, •) : Â k x Mr R. 

(i) cr C. N败 is called a convex rational polyhedral cone if there exist Vi,... ,Vs G N 

such that 

(T = {Ai?；! + ... + XsVs : Ai > 0 for all i}, 

or if a = {0}. a is called strongly convex if cr n (-cr) = {0}. We also define the 

dimension of a to be the dimension of the linear space ]R • cr = cr -f {—a). 

(a) If a C N^ is a convex rational polyhedral cone, then the dual cone a c Mjr 

is the set 

a := {u e M]r : {u, > 0 for all v E cr}, 

7 
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which is also a convex rational polyhedral cone. 

(Hi) A face r of a convex rational polyhedral cone a is a subset 

T = cr n w丄：= {v e (7 : � w ’ V �= 0 } 

for some G d" A M，and is written as r ^ a. r is a convex rational polyhedral 

cone if a is so. A face of a face is a face, and any intersection of faces is a face. 

Also if T < (7 then d" fl t丄 is a face of a, with 

dim{T) + dim{& n t丄)=dim�Ni�= n. 

This gives a one-to-one correspondence between the faces of a and the faces of a. 

Now Gordan's Lemma states that if a is a convex rational polyhedral cone, 

the set Sa defined by 

Sa : = 

is a finitely generated semigroup. This gives a C-algebra A^ := C[5^]. We can 

then define the affine toric variety associated to a by: 

Ua ：= Spec C[Sa . 

In particular for a = {0}, 5{o} = M. We then have 

U{o} = Spec C[M] = Spec C[Xi, X f \ . . . , 

= C * X . . . X C* = ( C T， 

which is an affine algebraic torus. As another example, take N = 1? and {61,62} 

, the standard basis. Then Â® = Let g be the cone generated by {ei, 62}. 
I 

：蔓 
ei 
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Then 

Ua = Spec Ar = Spec C[Xi, X2) = C .̂ 

If T ^ (7 is a face, then A^ C Ar. This determines a morphism Ur = Spec Ar —>• 

U(j = Spec Ao•，which can be shown to be a principal open embedding. In partic-

ular, if a is strongly convex, {0} C cr is a face, so that T^ ：= (C*)" is embedded 

as a principal open subset in U .̂ 

To define general toric varieties, we need the notion of a fan: 

Definition 1.1.2. A fan S in N^ is a finite set of strongly convex rational poly-

hedral cones in N^ satisfying the following conditions: 

(1) If (7 eJ^, then r G S /or each r < a; and 

(2) If (7, (t' G E, then a Ha' is a face of both. 

We define the support ofT. to be the set |E| = IJ^^^ a C N^. Also for each d>0, 

denotes the set of d-dimensional cones o/S. 

Definition 1.1.3. Let N and M be as before and H he a fan in N^. The toric 

variety Xe defined by E is the identification space 

知 = I I � 
aen 

by gluing together U�and U�' along U命丨 which is embedded in both U^ and U�' 

as a principal open subset. can be shown to be an irreducible, separated and 

normal (in fact Cohen-Macaulay) algebraic variety of dimension n. 

For example, again take N = I? and {61,62} the standard basis. Consider 

the fan S in ATk = generated by the cones o-q, (JI and G<I where 
1 

(To = IR>oei + IR>oe2, 

(7i = E>oe2 + M>o(-ei - 62), 

(72 = lK>oei + M>o(-ei - 62). 
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62 I ‘ 

/ cr2 
一ei - 62 

Using the dual basis { e “ U of M, the dual cones are given by 

斤0 = M>oet + R>oe；, 

<71 = R>o(-e*i)+R>o(-e;-he；), 

斤 2 = R>o(-e;)-i-R>o(e*-e；). 

-e'l + 62 

^ 

斤2 e丨-

So we have 

C/.o = SpecC[Xi，X2] 

‘ I f (To : Ti : T2) denotes the homogeneous coordinates on P^ and we let X：= 

Ti/Tq, X2 = T2/T0, then X^, which is given by U叫,f/^ and [/乃 gluing together, 

is isomorphic to P .̂ 

Remark 1.1.1. (i) Any 1-dimensional toric variety is isomorphic one of the 

followings: C*, C and P^ 
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(a) IfZ consists of just one n-dimensional cone a and its faces, then X^ is just 

the n-dimensional affine toric variety U^-

(in) If S is a fan in N^ and is a fan in N‘，then the set of products a x a', 

where a eT, and a' G Y!, forms a fan S x S' w Â k © N; and 

^ExE' = XE X 

This can of course be generalized to a product of any number of spaces. 

Note that T/v — (C*广 is embedded as an open and dense subset in X^ (so 

that all toric varieties are birational to each other and in particular they are all 

rational). The action of T̂ v on itself naturally extends to an action of TV on X^： 

TN X Xs —>• Xe 

II U U 

TN X Tn — T N 

This is why we call them toric varieties. 

Let E be a fan in N and E' a fan in N', Suppose (p : N' N is a, homomorphism 

of lattices whose scalar extension ^ N^-^ N^ satisfies the following condition: 

for each cone a' G there exists a cone (j G S with (̂ (cr') c cr. (1.1) 

Then (p induces an equivariant mqrphism 

•• ： X^i —> X^. 

. 1 . 2 Properties of Toric Varieties 
t 

One of the features of toric varieties is that their geometric properties can easily 

be translated into combinatorial properties of fans and cones. This makes the 

study of toric varieties more interesting and accessible. We will see some of these 

properties in the next few sections. 
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1.2.1 Smoothness 

We begin with the characterization of smoothness of toric varieties: 

Proposition 1.2.1. An affine toric variety is nonsingular if and only if a is 

generated by part of a Z-basis of N. In this case, 

= X where k = dim(a). 

More generally, a toric variety Xj： is nonsingular if and only ifE'is nonsingular, 

in the sense that each a ET, is generated by part of a Z-basis of N. ’ 

We can also determine when a toric variety is an orbifold, i.e. with only 

quotient singularities: 

Proposition 1.2.2. A toric variety Xj： is an orbifold if and only if S is sim-

plicial, i.e. each cone a E is generated by 敬-linearly independent elements in 

Nu. 

1.2.2 Compactness 

Instead of discussing the compactness of a single toric variety, we consider the 

relative question, i.e. properness of maps between toric varieties. Recall that if 

S, E' are fans in N and N' respectively. Then a lattice homomorphism if : N' 

N whose scalar extension .. N^ — N览 satisfies (1.1) induces an equivariant 

morphism v?* : X^/ —>• X^.. 

Proposition 1.2.3. : X^i —> Xs is proper if and only if 

• 厂 = P I . 

In particular, applying this proposition to the zero map we have the 

Corollary 1.2.1. Let E be a fan in N^. Then the toric variety X^^ is compact if 

and only if 丨！；丨=Ni. 
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On the other hand, concerning resolution of singularities, we have the following 

Corollary 1.2.2. ^p, : Xjy —X^. is proper and birational if and only if (f : 

N' — N is an isomorphism and S' is a locally finite subdivision of E under the 

identification N; = N^, i.e. for each cr G S, {a' e'E' : a' C a} is finite and a is 

the union of such u'，s. 

From now on, unless otherwise stated, we assume all toric varieties are com-

pact, i.e. |I]| = iVK • 

1.2.3 Stratification 

Since each toric variety X .̂ admits a torus action of TN = (C*)", we can decom-

pose XY. into a disjoint union of T/̂ -invariant orbits. For each r G E let N^ be 

the sublattice of N generated by TD N, and 

N{T) = N/Nr, M{T) = — n M 

the quotient and its dual. N[T) can be proved to be a lattice, so we can define 

an affine toric variety 

Or ：= T;v(r) = Hom(M(r), C ” = Spec C[M(r)] = N{T) 0z C* 

of dimension n — dim{T). If we define 

•• Starij) •= {a C N(T)^ : a Y T} 

where a denotes the image of a under the projection iVjg — t h e n 5tar(r) 

is a fan in N{t)^ and the closure of 0丁 is given by the (n - dim{r))-dimensional 

toric variety 

K- := ^Star{T)-

We have the 
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Proposition 1.2.4. Among the orbits 0” orbit closures Vr and the affine open 

sets U(j, the following relations hold: 

(i) U. = l[Or； 
T<A 

(ii) Vr = ll^y> 
7 —T 

(Hi) Or = V r - [ j VV 

In particular, X^ is a disjoint union of the Or i.e. Xj： — J J O^. 
res " 

1.3 Divisors on Toric Varieties 

The discussion is restricted to T/v-invariant divisors. 

1.3.1 Weil divisors 

By the stratification of X ,̂ described above, we know that the TVinvariant prime 

divisors of XJ： are given by the closures K- of the 1-dimensional orbits OR, T E 

11(1). Number the 1-dimensional cones as ti, ...,Td, and let Vi, i = 1’..., d be the 

primitive generator of Tj. Then the prime divisors are given as: 

Di ：= V；,, 

and the TV-invariant Weil divisors are formal sums Yli=i (h e Z. 

1.3.2 Cartier divisors 

To deal with (TV-invariant)Cartier divisors, we first introduce the so-called sup-

port functions. 
» 

Definition 1.3.1. A continuous piecewise linear function /i : |S| = N^ —> E 25 

called an integral support function if for each cone cr G E there exists u(a) G M 

such that 

h{v) = {u{a),v) for v e a. 
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As is well known, we then have the following 

Proposition 1.3.1. Tj^-invariant Cartier divisors D on X^ are in one-to-one 

correspondence with integral support functions h : N^ — M. 

If /i : Nk —̂  R is an integral support function, we denote by Dh the corre-

sponding Cartier divisor. Since X̂ ^ is normal, the group of Cartier divisors is 

naturally embedded into the group of Weil divisors. 

Proposition 1.3.2. Let [Dh] be the Weil divisor associated to a Cartier divisor 

Dh. Then we have 
d 

From this we get a criterion for a Weil divisor aiDi to be Cartier: for each 

cone (J E S there exists u{a) G M such that {u{a),Vi) = - a j whenever Tj C a. 

Information about a Cartier divisor Dh can be read off from properties of the 

function h. 

Proposition 1.3.3. Let Dh = Ylt=i (kDi be a Cartier divisor. Then 

(i) Dh is generated by global sections if and only if {u{a),Vj) > h(vj) = —aj 

whenever Tj ̂  a. 

(ii) Dh is ample if and only if {u{a),Vj) > h{vj) = -aj whenever Tj 名 a and a 

is n-dimensional. 

Those functions satisfying (i) are called upper convex and those satisfying (ii) 

are called strictly upper convex. 

Since a toric variety Xj： is Cohen-Macaulay, it has a dualizing sheaf cJxj： and thus 

a canonical divisor Kx^- Before finishing this section, we would like to determine 

the canonical divisor Kxĵ  on a toric variety X^. This is given by the following: 

Proposition 1.3.4. The dualizing sheaf on a toric variety X-^ is given by 
d 

i=l 

SO that we have Kx^ = — Yli=i A-
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1.4 Polarized Toric Varieties 

First we define another type of combinatorial objects, namely polytopes: 

Definition 1.4.1. Let N, N^, M, Mr be as before. 

(i) A convex poly tope A C M^ is the convex hull of a finite number of points in 

Mir. a is said to be integral if its vertices all lie in M. The dimension of A is 

defined to be the dimension of the subspace spanned by {lii — U2 : lii, U2 G A} . 

(ii) The polar (or dual) of A C M^ is the set A � C N议 defined by 

Z\�：= {v e N议:(n, v) > - 1 for all u e A} , 

which is also a convex poly tope. 

(in) A face 0 of A is a subset of the form 

9 = {u e A : {u,v) = r} 

for some v £ Nf^ and some r eR. A face of a convex poly tope is also a convex 

poly tope. As in the case of cones, a face is denoted as 9 < A. 

As in the case of cones, we have the following combinatorial result for poly-

topes: 

Proposition 1.4.1. If 6 is a face of a convex polytope A, then 

d � { i ; e A° : = - 1 for all u e 9} 

is a face of A°. This gives a one-to-one correspondence between the faces of A 

and the faces of A�. Also we have 

‘ dimiO) + dim{e°) = dim{M^) - l = n-l. 

Now let Dh = Yli=i aiDi be an ample T^-invariant Cartier divisor on a toric 

variety X^, i.e. we are given a polarized toric variety. Define 

A/i {u e M]r : (u, Vi) > —di for all i]. 
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Then Ah can be shown to be an integral convex polytope in Mjg which contains 

0 in its interior. 

Conversely, given an integral convex polytope A in M^ which contains 0 in its 

interior, we can define a fan Ea in N狀,called the normal fan of A, as follows. 

For an /-dimensional face 6 ^ A, let ae C N^ be the dual of the /-dimensional 

cone 

(Je •= {A(w — : w e A , u G 9, A > 0} c M ® . 

We have dim{(7e) = n - dim{6) and we set Ea ：= {ae : 9 ^ A} . Then it can 

be shown that the normal fan defines a polarized toric variety: a projective toric 

variety we denote by Pa together with an ample Cartier divisor D. In fact, 

if we consider monomials t'^x" where v/k e A, with multiplication defined by 

t^^v.ti^V 二 ^k+î vW^ and let ^a be the C-algebra generated by these monomials, 

then Pa is given by: 

Pa = Proj <Sa， 

and the ample divisor is given by 
d 

D = aiDi 
1=1 

where â  = -h{vi) = -in{{(u,Vi) : tz G M A A}. Hence we get a one-to-one 

correspondence between integral convex poly topes and polarized toric varieties. 

• The preceding discussion can be illustrated again by the projective plane 

Xe = p2. It is compact since |S| = Nĵ  = R .̂ It is also smooth since each 

,2-dimensional cone in E is generated by a Z-basis of N. The 1-dimensional cones 

are given by 

To = VQ = —ei — 62, 

丁 1 = M>oi'i, = ei, 

T2 = M>OV2, V2 = 62. 
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Denote the corresponding prime divisors by DQ, Di and D2 respectively. Then 

the anticanonical divisor given by 

-Kp2 = Do + Di + D2 

is ample. The polytope A corresponding to this polarization of P^ is then given 

by 

A = {n e Mk = ]R2 .〈仏 ”0 > —1 for i = 1，2，3}’ 

which is the convex hull of the points - e l + 2e;’ 2el - ê  and -e^ — ê  in M^. 

This example can of course be generalized to n-dimensional projective space P", 

n > 1. 

-el + 

备 多 
-e ! - ê  2eT - e； 

—ei - 62 

* 

\ 



Chapter 2 

Calabi-Yau Manifolds from Toric 
Varieties 

In this chapter we construct Calabi-Yau manifolds as hypersurfaces and complete 

intersections in toric Fano varieties. We follow the approaches in [2] and [3 • 

2.1 Toric Fano Varieties 

We begin with the definition of toric Fano varieties: 

Definition 2.1.1. A compact toric variety X^ is Fano if its anticanonical divisor 

—Kxj： = Di is ‘Cartier and ample. 

Remark 2.1.1. (i) In general the canonical divisor Kx of a Cohen-Macaulay 

variety X is Cartier if and only if X is Gorenstein, i.e. all of its local rings are 

Gorenstein. Hence the definition implies that a toric Fano variety is Gorenstein. 

(ii) By Proposition 1.3.3(ii), a toric variety X^ is Fano if and only if there is a 

strictly upper convex integral support function h : N^ R with h{vi) = —1 for 

i — 1，•. •，d • 

Since a toric Fano variety X̂： is polarized by its anticanonical divisor, it is 

defined by an integral convex polytope A C Mk with 0 in its interior: Xj： = P^. 

19 
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A natural question then arises: how to characterize A when Pa is Fano? In fact, 

it is the ingenious idea of Batyrev to introduce the notion of reflexive polytopes 

to answer this question. 

Definition 2.1.2. An integral convex poly tope A C M^ with 0 in its interior is 

called reflexive if its polar A° C N^ is also integral and contains 0 in its interior. 

Since 0 G Int(A) and ( A � ) �= A, A is reflexive if and only if A � i s reflexive. 

We also have the following equivalent definition of reflexive polytopes: 

Lemma 2.1.1. A C Mjr is reflexive if and only if it satisfies the following (i) 

and (a): 

(V each codimension one face 9 of A is supported by an affine hyperplane of the 

form {UE Mu： {u, VQ) = - 1 } for some VQ E N. 

(ii) M ( A ) n M = {0}. 

Proof. This follows from the definition of the polar of a polytope and Proposi-
tion 1.4.1. • 

Batyrev shows the following [2]: 

Proposition 2.1.1. Let IP̂  be a projective toric variety polarized by the ample 

Cartier divisor D^. Then Pa is Fano if and only if A is reflexive. 

Proof. First suppose that Pa is Fano. Then there exists a strictly upper convex 

integral support function h : N^ R such that h{v) = - 1 for each generator v 

of a 1-dimensional cone of the normal fan Sa of A. But recall that the normal 

fan consists of cones over the faces of the polar A � o f A, so the 1-dimensional 

‘ cones are cones over the vertices of A � . Hence the function h takes the value -1 

on each vertex of A°. Such a vertex is of the form Xv where X > 0 and v e N. 

But h{Xv) = —1 forces A = 1 since h{v) e Z. This shows that A° is integral. 

Conversely, suppose A is reflexive. Write Dh = YlLi ^iA- Recall that 

di = -h{vi) = -mi{{u, t;;�： w € M A 八] 
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But A is reflexive, so Vi e N and 

{u, Vi) > - 1 for all w e M n A. 

Hence â  = —(-1) = 1 for all i. In other words, D^ = J2t=i Di == 一〜八 and 

-Kp^ is thus Cartier and ample. By definition, Pa is Fano. • 

This proposition shows that toric Fano varieties are in one-to-one correspon-

dence with reflexive polytopes. 

The following are some examples of toric Fano varieties. 

Example 2.1.1 We have already seen the example of P .̂ Now we generalize that 

to arbitrary dimensions. Let N = V and {ei,..., Cn] be the standard basis of N 

and let CQ := - YA=I Then the cones generated by subsets of {eo, e i , e ^ } 

form a fan S in N^, which gives the projective space X^ = F .̂ On the other 

hand, let A be the convex hull of the n + 1 points in Mjr = E": 
n 

- [ < ’ j = 1,…,n. 
i= 1 i^j 

Then A is a reflexive polytope with polar A�given by the convex hull of {cq, ei,..., 

in NE.. Hence P" = Pa is a toric Fano variety. 

Example 2.1.2 Let ni, n2 be positive integers and denote n ni +n2. Let N = 

Z" and {ei，...’ en” /i , ...，/n�} be the standard basis of N and let eo ：二 — î’ 

/o := — S j i i fj- Then the cones generated by subsets of {eo，ei，...，eni’/o,/i’."，/n2} 

form a fan S in N^, which gives the product of projective spaces Xj： = x 

On the other hand, let A be the convex hull of the (ni + 1) x (712 + 1) points in 

‘ MR：. 

ni n2 
{ - ; ^ <，n i e ; - ; ^ <， j = l，...’n i } �{-;^/;，n 2 / ; - E / r , j = l，...，n2}. 

Then A is a reflexive polytope with polar A° given by the convex hull of the 

points {eo, e i , f o , /i,…’ / n j in N^- Hence P̂ ^ x P"̂  二 E^ is a toric Fano 
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variety. A concrete example is given by pi x pi. The corresponding polytope A 

and its polar A° are the convex hulls of the points 

{e; + 6*2, - e l + e;’ e； - e;，-e； - e；} and {ei, -e：, 62, -62} 

in Mk and N^ respectively. 

- e ! + ê  ej 么。 

- 鲁 / - ^ ^ 
-e j - 62 A i ej - 62 _e2V 

More generally, one can construct P"̂  x . . . x as a toric Fano variety. Also 

note that this is a special case of the construction in Remark l.l.l(iii) 

Example 2.1.3 Consider and its standard basis {cq, ei,..., Let do,..., dn 

be positive integers and denote d := Y^i^o 成-Let N be the rank n lattice defined 

�b y 

Let Vi, i 二 0,1,...，n be the image of Cj in N. Then the cones generated by 

{vo, Vi,... , fn} form a fan S in N^, which gives the weighted projective space 

Xe = P ( 而 ， I n fact, F{do,...，4) = (C 奸 1 - {0})/C* where C* acts by 

^ • {zq, .. .,Zn) = {^^zq, . . . , (^^""Zn). However not all weighted spaces are Fano. 

The necessary and sufficient condition is given by the following: 

Lemma 2.1.2. X^ = F{do,...’ dn) is Fano if and only if di\d for i = 0,1，..., n. 

Proof. First note that the cone generators VQ, vi, satisfy YA=O — > 
Consider the divisor D = J ]二 A - For each i 二 0，1，.",71，there exists a unique 

Ui G M (g) Q such that (wj, Vj) = - 1 for all j — i. Then D is Cartier if and only 

liuieM for all i. But 
y^.,. dj d 
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It follows that Uj G M if and only if di\d for all i. Once D is Cartier, it is 

automatically ample since (ui^Vi) > —1. • 

So for example, P(l, 1,1,1,4), P(l，l’2’2’6) and P( l , l , l , 6 ,9 ) are Fano, but 

P(l, 1,2,3,5) and P(l, 1，1,3’ 7) are not. 

2.2 Calabi-Yau Hypersurfaces in Toric Fano Va-

rieties 

Let Pa be an n-dimensional toric Fano variety associated to a reflexive polytope 

A C Mik where rank M - n. Let Z/ G | - i^pj be a generic anticanonical 

hypersurface determined by / G Then 

Proposition 2.2.1. Zj is a Calabi-Yau variety, i.e. its dualizing sheaf ujzj is 

trivial, and Of) = 0 for 0 < k < n - 1. 

Proof. By Remark 2.1.1(i), Pa is Gorenstein, and hence has at most canonical 

singularities [2). By a theorem of Bertini type [28], we know that Zf also has 

at most canonical singularities. Now since Pa is Cohen-Macaulay and —Kp^ is 

Cartier, we can use the adjunction formula to give 

On the other hand, as Or^ { -Z f ) = = up^ we have 

0 — 吟 广 O p 八 — — 0 

which induces the long exact sequence 

… — O p J —昨F, Ozj) - i/�(IPa，MPJ 4 •... 

But for a compact toric variety 知，we always have C^Xe) = 0 for ^ > 

0. So = 0 for fc�0. And by Serre duality, //知+i(Pa，MpJ ^ 
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= 0 for A; < n - 1. Altogether we get = 0 for 

0 < A: < n - 1. • 

In fact if we take a generic anticanonical hypersurface in any Fano variety 

(i.e. not necessarily toric), we still get a Calabi-Yau variety. But the point in 

considering just the toric case is that, as we can see below, the singular Calabi-

Yau Zf above can always be resolved into a Calabi-Yau orbifold with at most 

terminal singularities and with (some of) its Hodge numbers given in explicit 

formulae. 

Of course, if the toric Fano variety is already smooth then the generic anti-

canonical hypersurfaces give examples of smooth Calabi-Yau manifolds. This is 

the case when, for example, Pa = P^ The corresponding Calabi-Yau 3-fold is 

the well-known quintic 3-fold. More generally, a generic degree n + 1 hypersur-

face in P" is a smooth Calabi-Yau (n - l)-fold. Other examples are given by 

generic hypersurfaces of appropriate multi-degree in product of projective spaces, 

e.g. the generic hypersurface of multi-degree (3’ 2’ 2) in P^ x x pi is a smooth 

Calabi-Yau 3-fold. 

Returning to the general situation when the toric Fano variety is not smooth, 

we shall construct a partial resolution of Zj which is minimal in a certain sense 

and the resolved variety will be a Calabi- Yau orbifold with terminal singularities. 

In particular, this resolved variety will be smooth in codimension three. Hence 

when dim{Zf) = n — 1 = 3，we still get a smooth Calabi-Yau 3-fold even if the 

ambient space is singular. 

To begin with, recall that the normal fan Sa C Â k of A C M^ consists of 

cones over faces of the polar 八。C ^Vr. Then let C Â k be the subdivision of 

A° satisfying the folio wings: 

(i) The vertices of A° are precisely the points in dA° f) N; and 

(ii) Any k-dimensional face of A° is the convex hull of A; + 1 lattice points in N 

(in such a way that besides these A; + 1 points, the convex hull contains no other 
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lattice points). Such subdivisions exist by a result in [26] and there are more than 

one choice in general: 

八 / 金 

Define S to be the set of all cones over faces of A°. If we denote by (p : N ^ N 

the identity, then it follows from Corollary 1.2.2 that the induced morphism 

r Xe —)• Xsa = Pa is birational and proper. 

Proposition 2.2.2. The partial resolution r : Xg —>• Pa is crepant (or minimal), 

i.e. 

Proof. First note that for each i = 1, ...,d the pullback of a prime divisor 

Di in Pa remains a prime divisor in X^ since r is a toric blow-up. Thus if h 

is the support function that corresponds to the canonical divisor K^^ of Pa, 

then h also corresponds to the divisor Now it follows from the proof of 

Proposition 2.1.1 that h equals-1 on dA°. But the generators of the 1-dimensional 

‘cones of E are all contained in dA°. Hence h equals -1 on all the generators of the * 
1-dimensional cones of E. This says exactly that h corresponds to the canonical 

divisor Kx^ of X^. The result now follows from Proposition 1.3.1. • 

Remark 2.2.1. (The proof of) the proposition also shows that Kx^ (or —Kx^) 

is Cartier and generated by global sections. 
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Before stating the next proposition, let's review some facts about canonical 

and terminal singularities. Recall that a normal and quasiprojective variety X is 

said to have canonical singularities if it satisifies: 

(i) for some integer r > 1, rKx is Cartier, and 

(ii) if / : y ^ X is a resolution of singularities and is the family of excep-

tional prime divisors of / , then 

rKY = nrKx) + Y,a,E, . 

where â  > 0 for all i. 

If further we have â  > 0 for all i, then X is said to have terminal singularities. 

Now for toric varieties, we have the following definition of Reid: 

Let (J C •/VjR be a strongly convex cone and let . . . , Vfc} be the generators of 

the 1-dimensional faces of a. We say that a is terminal (resp. canonical) if it 

satisifies (i) and (ii) (resp. (i) and (ii')) below: 

(i) Vi,... ,Vk are contained in an affine hyperplane H = {v £ N^ : (n,v) = —1} 

for some u G M; 

(ii) iv n (7 n {i； e iVE : — � 2 - 1 } = {0,1；1’ …• ’ 

( ( i i，）N n a n { v e N u : { u , v ) > - i } = {o}.) 

.V2 . V2 

a terminal cone a canonical cone 

Reid's criterion (cf. (1.12) of [29]) then says that a toric variety X .̂ has 

terminal (resp. canonical) singularities if and only if Vcr G S, (J is terminal (resp. 

canonical). 
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Proposition 2.2.3. The resolved variety X^ has terminal singularities. 

Proof. Let cr G E. By definition, the generators {vi, ...,Vk} of the 1-dimensional 

faces of cr are contained in an affine hyperplane H = {v e N^ : {u, v) = —1} C iV® 

for some u E M-, and there are no other lattice points of N in the part of cr under 

or on H, i.e. iVntrA {̂； € iVig : {u,v) < - 1 } = {0,i;i, ...,Vk}. By Reid's criterion, 

Xy. has terminal singularities. • 

It also follows from the definition that E is simplicial, i.e. each cone o" G S 

is generated by E-linearly independent vectors in So X .̂ is an orbifold by 

Proposition 1.2.2. Together with the above proposition, this implies 

、 
Corollary 2.2.1. X^, is smooth in codimension three. 

Now let Tf ：二 T-i {Zf) be the proper transform of Zf via r, together with the 

partial resolution 

r : Zf Zf. 

Proposition 2.2.2 shows that Zf is a generic anticanonical hypersurface in X^, 

and hence an orbifold with terminal singularities; and T : Zf Zf is crepant. 

Also, by (the proof of) Proposition 2.2.1, Zf is a Calabi-Yau variety. 

Remark 2.2.2. (i) In [2] Batyrev termed the morphisms T : X^ and 

T : Zf Zf as maximal projective crepant partial desingularizations (abbreviated 

as MPCP-desingularizations). 

(ii) In the sense of the Mori Program, Zj is a minimal model of Zf. 

. Let's look at a concrete example of MPCP-desingularizations. Take N = Z^ 

with its standard basis {ei,e2,63,64} and let S be the fan in N^ = IR4 generated 

by {vo, ̂ 1̂，V2, V3, V4} where vq = - e i - 2e2 — 2e3 — 664 and Vi = e; for i = 1,2，3,4. 

� Then 

+ + 2v2 + 2V3 + 6V4 = 0. 

V 



On Some Constructions of Calabi-Yau Manifolds . 28 

Hence the toric variety corresponding to S is the 4-dimensional weighted projec-

tive space P ( l , 1,2,2,6). By Lemma 2.1.2，this is a toric Fano variety. Denote by 

A the corresponding reflexive polytope. Then the vertices of the polar C N议 

are exactly the points {vo,Vi,V2,V3,V4}, and A is the convex hull of the points 

Wo = (-1,-1,-1,-1), 

= ( 1 1 , - 1 , - 1 , - 1 ) , 
= ( - 1 , 5 , - 1 , - 1 ) , • 

= ( - 1 , - 1 , 5 , - 1 ) , 

U4 = ( - 1 , - 1 , - 1 , 5 ) . 

If (ZQ, ZI, Z2, Z3, Z4) are weighted homogeneous coordinates for P ( l , 1,2,2,6), then 

the singularities is along the surface zo = = 0 which corresponds to the cone 

generated by VQ and Vi (or the codimension 2 face Q° •< A° with vertices 1*4). 

Let v̂  •.= i(询+vi) = (0 , -1 , -1 ,3 ) . Tlien3A�n7V:= Hence 

the MPCP-desingularization of P ( l , 1’ 2，2，6) is obtained by inserting the vertex 

v̂  into A° and subdividing the polytope. In geometric terms, this corresponds 

to blowing up the surface ZQ = ZI = 0. In this example, the choice of subdivision 

is unique. But in general, there are several different ways in subdividing the 

polytope and the resulting Calabi-Yau orbifolds differ by so-called flops. 

2.3 Computation of Hodge Numbers of Zf 

By general Hodge theory, generic hypersurfaces of an orbifold have pure Hodge 

structures on their cohomology groups. In particular it is the case for Z/. Thus 

it makes sense to speak of the Hodge numbers of Zf. In this section, we shall 

show how to calculate /i""-2’i(Z/) and h } , � Z f ) , expressing them in terms of the 

combinatorial data of A. 
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2.3.1 The results of Danilov and Khovanskii 

In order to compute hP-2'i�Zf), we need to recall some results from [15]. By 

Deligne's Hodge theory [16] for any complex algebraic variety X (even noncom-

pact or singular), the cohomology groups with compact support H^(X) are en-

dowed with the so-called mixed Hodge structures. The Hodge-Deligne numbers 

are then defined as := Danilov and Khovanskii 

further introduced the following invariant of X in [15]: 

k 

Observe that eP^ (̂X) = e '̂P^X). If X is an orbifold, then H^{X) = H^{X) 

actually carries pure Hodge structures, so = ^ \i p + q ^ k and 

we have e^^^X) = ( - 1 广丑口+<?(；0) = ( - < 7 ( x ) . In addition, the 

followings were proved in [15]: 

Proposition 2.3.1. (i) Suppose X is a disjoint union of a finite number of locally 

closed subvarieties Xi for i G /. Then 

LEI 

(ii) If X = X' X X" is a product of two complex algebraic varieties, then 

e^'^iX) = Yl . 

{p'+p",q'+q")={p,q) 

(i) is proved by using the exact sequence of Hodge structures: 

for a closed subvariety Y in X. (ii) follows from the Kiinneth isomorphism 

0 H;{Y) — H*{X X Y) which is compatible with the Hodge structures. 

Now let Fa be a polarized toric variety associated with an integral convex 

polytope A C Mk. Let Zq C U{O} ^ (C*)" be a hypersurface obtained by 

restricting a divisor Z of Pa with Z e . 
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Definition 2.3.1. Wt say that ZQ is A-regular if Z has a transversal intersection 

with all the strata o/Pa； i.e. it has smooth intersection with all the orbits of 

P A . 

Making use of Proposition 2.3.1 and other results, Danilov and Khovanskii 

obtained some general formulae for the Hodge numbers and 

2，o(丑c几-i(Zo)) which we need in computing Before stating their 

results, we have to fix some notations: .. 

Definition 2.3.2. We denote by /(A) the number of integral points in A and by 

I*{A) the number of integral points in the interior of A. 

Proposition 2.3.2. Let dim{A) = n > 4. Then 

(i) ""-2，1(//?一i(Zo)) + = r (2A) - (n + l ) r ( A ) ; 

(in) = Y. 
codim{6)=l 

where 6 ranges over faces of codimension one of A. 

Remark 2.3.1. When A is a reflexive polytope, its codimension 1 faces are given 

by {u e A : {u,v) = - 1 } where v is a vertex of A° which is integral since A° has 

integral vertices. But the integral points u in the interior of 2A satisfy {u, v) > —2 

for all vertices v of A�’ and hence {u,v) > —1. It follows that l*(2A) = /(A). 

Similarly, /*(A) = 1. 

Danilov and Khovanskii also proved a theorem of Lefschetz type, which will 

also be used in the sequel: 

Theorem 2.3.1. For a A-regular hypersurface ZQ C (C*)", we have 

(i) = Ofork<n-l; 

(ii) hP’q[H?-i(^Zo)) = Oforp + q>n-l; 

(Hi) h ’ 浏 ) = f o r k > n - l . 
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The Hodge numbers of the torus (C* 广 is given by 

, CI liv = q and k = n + p, 

0 otherwise. 

2.3.2 The Hodge number /i几-2’i(巧） 

We are now ready to compute 2，i(Z/). 

Theorem 2.3.2. For n > 4 the Hodge number (z}) is given by 

�2’喊)=1(A) _ n -1 - r(的 + ^ r[e)r(e�) 
codim{d) = l codim(0)=2 

where 9 in the summations denote faces of A and Q�denote the face in A�dual 

to 9. 

Proof. First note that since Zf is quasi-smooth and compact, we have /i"—2’i(巧)= 

(—1 广-le几-2’i(gJ). By Proposition 2.3.1(i), the key is then to find a 'good' strat-

ification of Zf. Recall that we have the proper birational morphism T : Zf Zf. 

Through this map, Zf can be represented as a disjoint union: 

where Z / �= Z j C ] O �a n d ae is the cone in N^ over the dual face 沪 — O n 

the other hand, all irreducible components of fibers of r over closed points of Zf̂ e 

are. toric varieties. A stratification of t•一i(Z/�) is thus given by smooth affine 

varieties isomorphic to Zj^o x (C*)^, k > 0. Therefore we obtain a stratification 

of by 

smooth affine varieties which are isomorphic to Zf̂ e x (C*广’没、A, 

k > 0. Next by Proposition 2.3.1(ii), Theorem 2.3.1 and the formulae for the 

Hodge numbers of the torus, we can conclude that e"-2’i(Z/’0 x (C*)” is nonzero 

only if 0 = A and fc = 0; or dim{e) = n - 2 and A: 二 1. In the first case: 0 = A, 

Zf,A = Z/ n 0{o} = ZQ is just the affine hypersurface in U{O} = (C*)" obtained 
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by restricting the divisor ZY. By Proposition 2.3.2(i) and (iii), we have 

en-2，i(Zo) = (—1 广i(广(2A) - (n + l ) r (A) — ^ 1*(0)) 
codim(0)=l 

= ( - l ” ( / ( A ) — ( n + l ) — [ r m . 
codim{0) = l 

For the latter case: dim[9) = n - 2 and k = 1. The strata which are isomorphic 

to Zf’0 X C* appear in the fibers of r over (n — 3)-dimensional singular affine 

subvarieties C Z/ having codimension 2 in ZF. By the very definition of the 

subdivision ^ of r is to 1 on t-i(Z/々）(Note that dim(0) = n - 2 

implies dim{9°) = 1 and the number of newly-added vertices to 9° is equal to 

l*{0°)). In other words, r'^Zf^e) has I*(9�) strata isomorphic to Z / � x C * for every 

codimension 2 face 9 of A. Now by Proposition 2.3.1(ii)，Proposition 2.3.2(ii) and 

the formulae for the Hodge numbers of the torus, we have 

e " - 2 ’ i ( Z , , X C ) = e"-3，o(Z,,) • = (—1 广 — “ ’ = ( - 1 广一丄/*� . 

Hence the codimension 2 faces contribute 

( - 1 广 1 Y^ r (卿。） 

codim(0) 二2 

to Therefore altogether we get 

� 2 , 1 (Xf) = ( -1 广 � - 2 ’ i ( Z , ) 

= ( — 1 广-i(e"-2’i(Zo) + Yu 广(没°)e"-2’i(2>,没 xC*)) 
codim{e)=2 

= / ( A ) - n - l - ^ 1*{6)+ Y , 哪 
codim{9) = l codim{0)=2 

• 
> 

, 2 . 3 . 3 The Hodge number � 

Theorem 2.3.3. For n > 4 the Hodge number h^'^Tf) is given by 

h y � = i ( A � ) - i _ n — 广(沪）+ E I • 糊 

codim{e°)=\ codim{d°)=2 
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where 6 ^ A and Q ��A ° are dual faces. 

Proof. Since n > 4, "2，o(g )̂ = q. Hence rk PicQ(?；) = h'''(Zf}. PicQ(2J) is 

generated by the classes of components of - ^ where ^ = S} n (C*)" is 

the affine part of Zj. On the other hand, the classes of these components are 

not independent. In fact, the group they generate contains the restrictions of 

Tyv-invariant divisors of on Tf. There are n relations on PicQ(Z/) given by 

the globally linear functions over N (defined by m e M) which correspond to 

principal Cartier divisors. It can be proved that these are indeed all the relations 

among the components of Z j — [2], Therefore, 

" i ’ i ( Z / ) 二 rk PicQ(Z/) = (number of components of Zf — zj^) - n. 

The components of Zf — Z/’o come from divisors Di restricted on Zf. Each Vi 

(the generator of r̂  G E(l)) lies in a face e ��A � . Recall that as r is a toric 

blowup, we have r ( A ) = V；日.There are several cases: 

Case 1: codim{e°) = 1. If Vi is an interior point of then r ( A ) is a point and 

Ẑ i n Z/ = 0 for a general Zf. This gives 

P ( 1 ) | — ^ = / ( A ° ) - 1 - ^ N N 
codim{d°)=l codim{e°)=l 

components. Note that we have used |S(1)| = |A�n iV — {0}| = 1{A°) — 1. • 

Case 2: codim{9°) = 2. Then dim{9) = codim(e°) — 1 = 1 and V；, is a curve. By 

the intersection theory of toric varieties [19], 

‘ i.e. Zf n V；, has I* (9) + 1 points, so that A fl Z j has I* (6) + 1 connected 

components. But their sum is already counted in case 1. Hence these totally 

gives, in addition, . 

E 明 " w 
codiTn{d°)=2 

components. 
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Case 3: codim(0�) > 3. Then dim{9) > 2. By Bertini theorem, Zf H V；, is irre-

ducible. Thus these give no new components. 

The result follows. • 

As mentioned in the introduction, physicists discovered a duality, called the 

Mirror Symmetry for Calabi-Yau 3-folds. In fact, many of the early constructions 

of Calabi-Yau 3-folds are for the purpose of verifying Mirror Symmetry, out of 

which the family of quintic in P^ and its mirror is the most famous (cf. [6]). 

After the work [6], many examples of mirror pairs have been constructed. In 

1993, Batyrev introduced (in [2]) the notion of reflexive polytopes and construct 

Calabi-Yau 3-folds as hypersurfaces in toric variety. This, on the one hand, 

greatly generalized the previous constructions of mirror pairs; and on the other 

hand, gave a possible mathematical interpretation of Mirror Symmetry. Notice 

that the formulae for and given in this section are interchanged 

when the roles of A and A° are interchanged. In view of this, Batyrev proposed 

that the families of Calabi-Yau 3-folds from dual polytopes A and A° form a 

mirror pair. He was able to show that his construction of mirror pairs generalized 

the previous ones. Details can be found in [2 . 

2.4 Calabi-Yau Complete Intersections in Toric 

Fano Varieties 

We now come to the construction of Calabi-Yau manifolds as complete inter-
sections in toric Fano varieties. To do this, we need to introduce the notion of 

t 

a nef-partition. Let Pa be an n-dimensional toric Fano variety associated to a 

reflexive polytope A. Let Sa be the normal fan of A. Given a partition 

Sa(1) = /iU …U/r 
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into r disjoint subsets, we define divisors Ej for 1 < j < r as: 

Then we have -Kp^ =五i + … + £；厂 

Definition 2.4.1. The decomposition Ea(1) = /lU.. .Ulr is called a nef-partition 

if for each j, Ej is a Cartier divisor generated by its global sections, (or equiva-

lently, A is a Minkowski sum Ai + ... + A ^ and Aj n A ) = {0} for any i ^ j.) 

Let fj e H^{FA, Op^{Ej)) be generic global sections. Let K C Pa be the 

complete intersection of dimension n - r defined by J\ = … = f ^ = Q. Recall 

that we have a MPCP-desingularization t : Xe 一 Pa. Let V := T-\V). Then 

V is again a complete intersection in XY： defined by global sections of semi-ample 

sheaves (i.e. sheaves generated by global sections). By the adjunction formula, 

V has trivial canonical sheaf, and so does V because T :V ^V is crepant. 

Lemma 2.4.1. Let D be a divisor on a polarized toric variety Pa such that 

is generated by global sections. Let AD be the polytope associated to D. 

Then we have: 

0 i/z ^ dim(An) 

1*{AD) if i dim A D 

\ 

Proof. Let k := dim(i^D)- Then the invertible sheaf defines the canonical 

morphism: 
ttd ： Pa ^ V := Proj 0 OpJmD)) 

m > 0 

where V = Pa^ is a A;-dimensional polarized toric variety and Op^(D) = 7r^Oy(l). 

Since ttd is finite, we have 

^ ! / ' ( ¥ , O v ( - l ) ) . 

But B'(V, O y ( - l ) ) = 0 for i < k and //^(V, O v ( - l ) ) = l*(Ao) [14]. • 
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Proposition 2.4.1. Let P^ be an n-dimensional polarized toric variety and Â  

for I < i < r be the supporting polytopes for global sections of some semi-

ample invertihle sheaves Ci on Pa such that dim{Ai + ... + A .̂) = n. Let 

fi G A) he generic sections and let Zi be the zero set of Let W 

be the complete intersection Zi n •.. A Z” Assume that n - r >2 and for any 

subset {A…•..，•、} C { A i , . . . , A J , 

1 if s = r] 
I* OK +... +八 J = 

0 if s <r. 
\ 

Then we have 

h'{Ow) = ... = = 0 and = " "—� (CV) = 1. 

Proof. Denote by K.* the Koszul complex: 

Or^-Z, _ … - Z r ) — ... — Z,) — ^ — Op .̂ 

i<j i 

There are two spectral sequences 'E and "E converging to the hypercohomology 

M*(PA,/C*): 

The fact that JC* is an acyclic resolution of Ow implies: 
( 

� 0 for a ̂  r; 
" W(JC)= 

Ow for q = r. 
V 

It follows that 'E degenerates at 'E2 and we have » 

IFF作(Pa, /C*)兰 iF(PA’ Ovv) = Ow). 

Now is the cohomology of the bicomplex: 

{ii’“.’i)r•一p} 
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By the previous lemma and the assumptions we made, we have 

� j^r’0 ^ 〃五0’n ^ Q 

and all other equal to zero. Hence "E degenerates at "Ei and we have 

isomorphisms: 

〃£；[，。SC’ and . 

]Hr+'(PA，/C*) = O f o r l < l < n - r - l . 

The result follows. • 

It now follows immediately from the proposition that V is a Calabi-Yau va-

riety. On the other hand, Y is also a complete intersection of global sections 

of semi-ample invertible sheaves Ci on Xs, the supporting polytopes of which 

are again A i , . . . , A^. Hence V still satisfy the hypotheses made in the above 

proposition, and so V is a Calabi-Yau orbifold (again with at most terminal 

singularities). 

When the E/s are taken to be ample divisors of Pa, explicit formulae for the 

Hodge numbers and /i^'^(y) can be given in terms of the combinato-

rial data of A, as in the case of hypersurfaces: 

/ ^ 一 1 ’ 1 ( 巧 = E ( E ( - i 广 + E 八力 ) - - -

�� i=i Jci jeJ 

E ( E ( - i 广丨幼 
codim{9)=l JCl jeJ 

+ E 广丨,*(!»)’ 
‘‘ codiTn{e)=2 JCl jeJ 

11 八 
h ’ {V) = Card {lattice points in faces of A° of dim <n-r-l}-n 

+ E 广丨J丨广(E明 
codim(0°)=2 JCl j£J 
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where / = { l， . . .， r } ’ J c / i s a subset and 6j < Aj is the face corresponding to 

没、A. We will not attempt to give a proof of these rather complicated formulae. 

Instead we remark that when r = 1，these formulae reduce to those in Section 2.3. 

More generally, Batyrev and Borisov defined the so-called string-theoretic Hodge 

numbers for V (cf. [3]). They are able to give explicit formulae for these numbers, 

which generalize all the formulae we present here. 

As in the case of hypersurfaces, generic complete intersections in smooth toric 

Fano varieties give examples of smooth Calabi-Yaus. So we can regard the pro-

jective space P" as a toric Fano variety. Denote by U a hyperplane. Then any 

effective divisor D on P" is a multiple of H. In particular, the anticanonical 

divisor is given by -Kpn = (n + 1)H. Let Ei := di>2ioil<i<r such 

that (ii + . . . + = n + 1 (or equivalently —Kfm = + . . . + Ey). This gives us 

a nef-partition of -i^rn. Let fi e Of>n{Ei)) be a generic section. Then fi 

is a degree di homogeneous polynomial on P”. Let V := {fi = ... = fr = 0} he 

the complete intersection. Then V̂  is a Calabi-Yau manifold of dimension n - r . 

The formulae in Section 2.4 certainly gives /i^'^(K) = 1，which also follows from 

the Lefschetz hyperplane theorem. The Euler number is given by 

_ \{n+l)n(n-l) (n + (n + 1)3 , 

L i=i _ 

In particular, when r = n - 3，we get smooth Calabi-Yau 3-folds. But di > 2, so 
� n—3 

n + 1 =： ^ dj > 2(n - 3) = 2n - 6 
i=l 

which implies that n <7. The possible cases are well-known and are all listed as 

follows: ‘ 
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n d[s description 

4 d = 5 the well-known quintic threefold 

5 di = d2 = 3 the intersection of two cubics 

5 di = 2, c/2 = 4 the intersection of a quadric and a quartic 

6 c?i = = 2, da = 3 the intersection of two quadrics and one cubic 

7 di = d2 = ds = d^ = 2 the intersection of 4 quadrics 

Similarly, regarding X ：= x . . . x as a toric Fano variety of dimension 

n := rii + . . . + nfc，we can determine when can a complete intersection in X give 

us a Calabi-Yau manifold. Denote by Hj, 1 < j < k, a hyperplane in P �a n d let 

/i :二 ITi X . . . X iî i X .. • X Then the effective divisors on X are generated by 

/1’...，Ik. The anticanonical divisor is given by -Kx = (ni+l) / i + .. .+(71^+1)4. 

For 1 < 2 < r, let Ei := dnh + . . . + dikh with dij > 0 and (kj > 2; and 

satisfy: 
r 

y^ dij = rij + I for j = 1，...，k. 
i=l 

This is a nef-partition of -Kx. Let fi € Ox{Ei)) be a generic global sec-

tion. Then fi is a multi-homogeneous polynomial on X of multi-degree {dn,... ’ c?认). 

Let V := {fI = ... = fk = 0} he the complete intersection. Then V is an 

(n - r)-dimensional Calabi-Yau manifold. Again, the Hodge numbers can either 

be calculated by the formulae in Section 2.4 or by Lefschetz hyperplane theorem. 

As an example, take X = P^ x P̂  x P^ Then - K x = 4八 + 2/2 + 2h- Let 

El := 3/1 and E2 ：= /i +2/2 + 2/3. This gives a nef-partition and V is a complete 

intersection of the zero sets of polynomials of multi-degrees (3’ 0,0) and (1,2,2) 

on X. V is a 3-dimensional Calabi-Yau manifold with e{V) = —48’ /i^'^(y) = 9 
and "2,1 (V) = 33. 

Before Batyrev's work, Calabi-Yau 3-folds have been constructed by physicists 

as hypersurfaces in 4-dimensional weighted projective spaces. However, to ensure 

that the hypersurface can be resolved to give a smooth Calabi-Yau, physicists 

have to impose the condition of transversality on weighted homogeneous poly-
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nomials, namely, the equations f = 0 and df = 0 have no common solutions. 

Finally physicists were able to list all the weighted Ip4 that admit a transverse 

polynomial. There are totally 7555 families. They then proceeded to plot the 

Hodge numbers (h '̂̂ , h '̂̂ ) of these examples (these Hodge numbers are of course 

found by computer), and they found that the graph is almost symmetric. This 

suggest that most of the examples in the list are indeed mirror pairs of Calabi-

Yau 3-folds. But a problem immediately arises due to the asymmetry: what are 

the missing mirrors? It turns out that these 'missing mirrors' can be found by 

using Batyrev's constructions. These mirrors are missing because they cannot be 

presented as transverse hypersurfaces in weighted P .̂ Nevertheless, using com-

puter, it can be shown that the polytopes associated to them are reflexive and so 

fit to Batyrev's constructions. Now, the plot of Hodge numbers shows an exact, 

not just approximate, symmetry. For details, see [7]. 

)• 



/ 

Chapter 3 

Calabi-Yau Manifolds by 
Quotients 

In this chapter we construct Calabi-Yau 3-folds by taking quotients. Both free 

group actions and actions with fixed points will be considered. 

3.1 Free Group Actions 

First we recall the Bogomolov structure theorem (see [4j): 

Theorem 3.1.1. Let X he a compact Kdhler manifold with Ci{X) = 0. Then 

there exists a finite unramified cover 

X ^X 

which is isomorphic to a product X = T x HiVi ^ Ylj Xj where T is a complex 

torus; Vi is a simply connected projective manifold, of dimension > 3, with trivial 

canonical bundle and = 0 /or 0 < p < dim{Vi); and Xj is a simply 

connected holomorphic symplectic even dimensional Kdhler manifold with trivial 

canonical bundle. 

Note that the factors K's are simply connected Calabi-Yau manifolds, while 

the Xj's are the so-called hyperkdhler manifolds. Now suppose that we have a 

41 



On Some Constructions of Calabi-Yau Manifolds . 42 

compact Kahler 3-fold X with Ci(X) = 0 and e(X) + 0. Then e{X) + 0 and 

hence no torus can appear in the above decomposition of X. There are also no 

factors of X / s as they are even-dimensional. Therefore by the structure theorem, 

there exists a finite unramified cover 

where V is a simply connected Calabi-Yau 3-fold. This implies that for both Y 

and X , we have: 
/̂ 0’0 = /,0,3 二 1，；̂ 0,1 = &0’2 = Q 

Hence X is also a Calabi-Yau 3-fold, with finite fundamental group 7ri(X). This 

suggests that we can start with a simply connected Calabi-Yau manifold V and 

construct new Calabi-Yau manifolds by finding groups, say G, acting freely on 

V. In this way, we may sometimes get Calabi-Yau manifolds with relatively small 

absolute value of the Euler number (since x i^ /G) = xiy)l\G\), which is desir-

able for physicists studying Superstring Theory. We give some examples here. 

Example 3.1.1 Consider the quintic in IP̂  given by { / = 0} where 

4 
f(zo,Zi,Z2,Zs,Z4) ：= ^ z f . 

1 = 0 

This is a simply connected Calabi-Yau 3-fold with Euler number -200. An Z5 x Z5-

action on V is given by the two generators: 

(7 ： {zo, Zi,Z2, 23，Z4) H (25, Zi, Z2, Z3, Z4), 

* 

‘ T •(勿，21，勿，A) H ( O l , 2̂ 5)， 

where C is a primitive fifth root of unity. Note that a fixed point of a must satisfy 

(2O，2;I，Z2’ 么3’ 之4) = HZI,Z2,Z3,Z4,ZO) for some A G C and this implies Â  = 1. 

Hence no point of V is fixed under cr. On the other hand, the fixed points of r in 
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P4 are (1’ 0，0’ 0,0), (0,1,0,0,0), . . . , (0’ 0，0’ 0’ 1)，none of which is in V. There-

fore, this is a free action. Let X := ^//(Zs x Z5). Then X is a Calabi-Yau 

manifold with fundamental group 7ri(X) = Z5 x Z5 and Euler number -8. 

Example 3.1.2 Let X P^ with homogeneous coordinates (xq,工1’ 工2’ 工3) x 

(yo, 2/1,2/2,2/3)- Using the notations in Example 2.5.2，we have -Kx = 4/i + 4/2. 

Let El := 3/1，E2 ：= 3/2 and E3 := Ii + I2- This gives a nef-partition of —Kx-

Let V be the complete intersection of the zero sets of the polynomials 
3 3 3 

X I 认 3 ’ Y^Xiyi. 
i=0 i=0 1=0 

Then V is a simply connected Calabi-Yau manifold with e{V) 二 -18 ’ /i^'^(V)= 

14 and = 23. Define cjX ^ X hy 

CT ： X (2/0,2/1,2/2,2/3) X (̂ /o, 0；̂!, , 

where a; is a cubic root of unity. Then the restriction of a (also denoted by a) 

acts on V freely and = 1. Let G := {1,^7, cr^} ^ Z3 and X := V/G. Then 

X is a Calabi-Yau manifold with 7ri(X) = G ^ Z3 and e{X) = - 6 . This is 

the famous Tian-Yau manifold, which was constructed by G. Tian and S.-T. Yau 

in the appendix of [36]. We can calculate /i^'^(X) as follows. First note that 

since K is a Calabi-Yau, we have the isomorphism Ty) = Qy) where 

H^(V,Ty) is the space of infinitestimal deformations of V. By the deformation 

theory- of Kodaira and Spencer, the linearly independent deformations can be 

represented by linearly independent homogeneous monomials. Now, the most 

general homogeneous cubic polynomial in P^ is given by Y^aijkXiXjXk, providing 

19 parameters (flijA：)，but only 4 of them are effective since the other 15 can 

be removed by a projective linear group. Hence a general cubic in P^ may be 

represented as: 
3 

工? + axoXiX2 + 6x10:2X3 + cx 2X3X0 + dx^xoxi 
1 = 0 
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and the linearly independent deformations can be represented by the monomials 

X0X1X2, X1X2X3, X2X3X0 and XSXQXI. For X, we can, by making use of the PGL 

freedom on both P ,̂ put the two cubics in the above standard form, giving us 

4 + 4 = 8 deformations. Then there will be no restriction on the defining equation 

of the hyperplane, so we have to count all terms Xiyj, giving us 16 — 1 二 15 

deformations (one of them is removed by scaling a nonvanishing term to 1). 

Totally, there are 8 + 15 二 23 = linearly independent deformations, 

represented by the monomials: 

工 i工 jXk ViViVk XiVj 

i j . k e {0,1,2,3} i , j , k e {0,1,2,3} except i = j = 0 

i, j, k all distinct i, j, k all distinct 

It is easy to see that, out of these 23 terms, only 9 are invariant under G. Hence 

we have 

= d i m { H \ V , n l f ) = 9. 

And so "1’1(；0 = 6. 

3.2 Crepant Resolutions of Orbifolds 

Generally speaking, it is more difficult to find free group actions than actions with 

non-trivial fixed points. In fact, non-free actions can also give us wonderful ex-

amples of Calabi-Yau manifolds, as in the case of Kummer surfaces. To deal with 

such examples, considerations of resolutions of singularities are necessary. We 

shall restrict purselves to resolutions of orbifolds, i.e. varieties with only quotient 

singularities. This is because resolutions of singularities are most probable in 

this case, and more importantly, these varieties can indeed give us new examples 

of Calabi-Yau manifolds. We begin with resolving the singularities of orbifolds 

locally, namely, resolving quotient singularities. 
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Let n be a positive integer and G a non-trivial finite subgroup of GL(n,C). 

Then G acts on C" and gives the quotient singularity C^/G. As our purpose 

is to construct Calabi-Yau manifolds, we are interested in crepant resolutions of 

C^/G, i.e. resolutions that preserve the canonical bundle. However g E G acts 

on by det{g), so that the canonical bundle of C^/G is well-defined at 0 

only if DET{G) = 1 for all G E G, i.e. G C SX(n,C). It follows that V / G can 

have a crepant resolution only if G C SL(n, C). From now on we shall assume 

that this condition holds unless stated otherwise. We will also assume that G is 

abelian, in which case toric methods are most efficient. 

We follow the treatment given by Roan in [30], with some modifications. Since 

G is abelian, we may regard it as a diagonal subgroup of 5X(n’C): 

广 A i � 

C c I 
乂 An 乂 

Let IRu be the vector space consisting of all n x 1 column vectors and { e i , . . . , e„} 

its standard basis. Define 

I xA ( 爿 & \ 

EXP: W (CT, 丨 H ； 

• J \ e / 

Let N := C M". Then N IS & free Z-module of rank N and we can 

identify N^ with W. Denote HY N' C N the standard lattice ZE\ then as 

abelian groups, G is isomorphic to N/N'. Let A be the cone in N^ generated by 

{'̂ 1) •. •，^n}) i.e. 
1 

(7 = {XiCi + . . . XnCn : 工 i > 0 } . 
.r . 

Then we have: 

Proposition 3.2.1. The affine variety U^ is isomorphic to C" /G. 
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Proof. In the appendix of [33], Roan and Yau gave an elementary proof of this. 

We give another proof here, following Fulton in [19]. Let M C M' he the duals 

of N' C N. Also let a' be the cone in N^ corresponding to cr C N^, with 

C^ = U�, — U�. Now G = N/N' acts on C[M'] by 

where v E N and u' G M'. We claim that under this action, we have 

C[M'f = C[M]. 

To prove this, let v i , . . . ,Vn be a basis of N so that kiVi,…，knVn form a basis 

for N', for some positive integers ki. Then C[M'] is the Laurent polynomial ring 

in generators Xi, and C[M] is the Laurent polynomial ring in generators Ui, with 

Xi = (t/j 产.An element (ai,...，a^i) G ^ Z / k i Z = G acts on monomials by mul-

tiplying [ / { � . . Uip by e2iv^(2>i“/fci), from which our claim follows. Intersecting 

AT' with = C[M], we get A^, = A^. Hence G acts on U…and 

U, = = C^/G. 

• 
Let A := o-n {a: - Y17=i e ^K ： Er=i 工！ S 1}. Then A is a polytope in 

Ni. Let A be the subdivision of A such that: 

(i) The vertices of A are precisely the points in dA A N�and 

(ii) Any /c-dimensional face of A is the convex hull of A; + 1 lattice points in N. 

Let E be the set of all cones over the faces of A. This gives us a partial resolution 

r : Xs —> Uff�analogous to the one in Section 2.2. The following proposition then 

follows from the proofs of Propositions 2.2.2 and 2.2.3: 

Proposition 3.2.2. The map T : Xj： U^j = C/G is crepant; and the variety 

Xs has only terminal singularities. 
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Remark 3.2.1. For a toric variety X^, the Euler number is equal to the number 

of n-dimensional cones in S. Hence in our case, e{X'£) = |G|. 

As mentioned in Section 2.2，orbifold terminal singularities are smooth in 

codimension 3, so in particular, we have: 

Proposition 3.2.3. For n = 2, 3； the resolved variety XY. is smooth. 

Remark 3.2.2. For n = 2, there is only one choice of the subdivision A and 

T : Xz — /G is the minimal resolution for the singularity of type Ak. However, 

there may be several choices for the subdivision in the case n = 3 and the resolved 

varieties X^ differ from each other by a flop. 

Let's look at some examples. 

Example 3.2.1 Define ^ : C^ ^ C^ by 

屯(之1,22，巧)={UJZI,UZ2,UJZ3) 

where u = e ^ ^ ^ / ^ and let G = = Z/3Z. In this case, the polytope A is 

the convex hull of {0，e!，62,63} and d/S^n N = {0，Ci,62,63, |(ei + 62 + 63)}. 

The resolved variety r : Xj： C^/G has Euler number e{Xj：) = |G| = 3. 

Example 3.2.2 Define $ : C^ C H y 

• = ((21,(222,(423) 

where C = e如柯飞、and let G = ^ Z/7Z. In this case, the polytope A is the 

convex hull of {0, ei, 62,63} and 

1 2 4 2 4 1 4 1 2 
n TV = {0’ ei, 62，63, -ei + -63 + -63, -ei + -62 + -63, -ei + -62 + -eg}. 
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A-A. 
The resolved variety T : Xj： C^/G has Euler number e(Xj：) = |G| = 7. 

Now we have a resolution of 3-dimensional abelian quotient singularities by 

toric methods. The resolutions of general quotient singularities in dimension 3 is 

provided by Roan in [32]: 

Theorem 3.2.1. Let G C 5L(3, C) be any finite subgroup. Then there exists a 

smooth crepant resolution of quotient singularities 

T:X ^ EYE. 

Roan's proof is by explicit constructions of the resolutions for all cases, making 

use of the classification of finite groups in 5L(3,C). The proof relies on earlier 

results by Ito [22], [23], Roan [31] and Markushevich [24]. Using this result, one 

can then prove the following theorem, also due to Roan [32j: 

Theorem 3.2.2. Let X be a 3-dimensional orbifold with only Gorenstein quotient 

singularities. Then X admits a crepant resolution. 

Proof. First we remark that 2-dimensional quotient singularities are classified and 

resolved classically. They are called the Kleinian or Du Val singularities. Each 

singularity C^/G for a finite subgroup G C 5L(2, C) admits a unique crepant 

resolution. Now if X is a 3-dimensional orbifold with only Gorenstein quotient 
I 

singularities, then its singularities consist of two types: 

(i) curves locally having singularities of the form (C^/G)xC where G C 5L(2, C); 

and 

(ii) isolated points locally of the form C^/G where G C 5X(3’C). 
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By the previous remark, singularities of type (i) admits a unique crepant resolu-

tion, while by Theorem 3.2.1, singularities of type (ii) each admits at least one 

crepant resolution. But since points of type (ii) are isolated, all these resolu-

tions are compatible with each other. Glue them together then gives a crepant 

resolution of X . • 

3.3 Examples From Complex Tori 

By Theorem 3.2.2’ one may now start with a 3-dimensional orbifold X with only 

Gorenstein quotient singularities and trivial canonical bundle, and consider a 

crepant resolution X of X. If it turns out that e{X) + 0，then X is a smooth 

Calabi-Yau 3-fold by the discussion at the beginning of Section 3.1. In particular, 

we may choose X to be a finite quotient of a smooth manifold with trivial canon-

ical bundle. This is in some sense a generalization of the Kummer constructions 

of iC3 surfaces. Let's proceed with some examples. 

Example 3.3.1 Consider the elliptic curve E := C/{Z®uZ) where u 二 e?冗 

is a primitive cubic root of unity. Set A^ to be the triple product E x E x E. 

Let gz be the automorphism of A^ by scalar multiplication by cj, and let G := 

{1)^3,^1} = Z/3Z. Take to be the quotient A^/G. This is a 3-dimensional 

orbifold with Gorenstein cyclic quotient singularities and trivial canonical bundle. 
�� 

Since E has 3 isolated singular points under the action of scalar multiplication 

by u, Va has 27 isolated singular points of type 1,1) which corresponds to 

Example 3.2.1. Now C^/(Z/3Z) has a unique toric resolution given by the blow-

up of the singular point, so Y^ also has a unique crepant resolution X^ given by 

blowing-up the 27 singular points, replacing each by a copy of P .̂ The Euler 

number of X^ is given by 

一 e{Xs) = e{Ys) - 2 7 + 27e(P= )̂ - i (27 + 27) + 54 - 72. 
o 
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Hence X3 is a smooth Calabi-Yau 3-fold. We can also compute the Hodge num-

bers of X3 as follows. A basis for H'̂ '̂ ^A )̂ is given by {dzi 八 dzj 八 dfk : h j , k G 

{1, 2, 3} and j < k}. The action of U multiplies dz�A dzj A dzk by U'^UJ = LJ, SO 

that =炉，1 �G = 0. Also, no new (2, l)-forms are introduced when 

¥3 is resolved, which implies that /{^'^(Xs) = = 0. Hence the Hodge 

numbers are given by: /̂ '̂̂ (A's) = 0 and /̂ 丄’乂馬）=36. 

Example 3.3.2 Consider the Klein quartic curve C — = 0} C 

P2，which is of genus g = Z. Let Aj := Q}.)''/Hi(C,Z) be the Jacobian 

of C. This is an abelian 3-fold. Let be the automorphism of Aj represented 

by the diagonal matrix diag((’ ("2，(4) where ( = 一"^r^ is a primitive seventh 

root of unity. Denote by G the order 7 group generated by 仍 and take Yj to be 

the quotient Aj/G. Then again Y-j is a 3-dimensional orbifold with Gorenstein 

cyclic quotient singularities and trivial canonical bundle. There are 7 singular 

points on Y7 of type 2,4) which corresponds to Example 3.2.2. The crepant 

toric resolution X7 of them is by replacing each with three F2’s crossing normally 

along the negative sections and fibers in a cyclic way. The Euler number of X j 

is given by 

e(X7) = e{Yj) - 7 + 7 - 7 - - 7 ) + 42 = 48. 

Hence Xj is a smooth Calabi-Yau 3-fold. Similar to Example 3.3.1，all (2’ l)-forms 

of A7 are killed by the automorphism 5-7, so we have 

“ 丑2’1(义7) = = = 0. 

Hence the Hodge numbers are given by: = 0 and /̂ "(义了）= 24. 

It can be proved that the only smooth Calabi-Yau 3-folds given by the res-

olution of abelian 3-folds quotient by cyclic actions are the two given in the 

examples above [33], [30]. This indeed generalizes the Kummer constructions of 

K3 surfaces. However, in order to construct more examples, one has to consider 

quotients of abelian 3-folds by other(i.e. non-abelian) actions. 
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3.4 Complex Multiplication and Calabi-Yau Three-

folds 

The notion of complex multiplication originated with elliptic curves that have an 

enhanced endomorphism ring. Let 二 C / Z + ZT be an elliptic curve. Then E is 

said to have complex multiplication or simply be of CM type if the endomorphism 

ring End{E) is seen to be larger than Z. This is the case if and only if r belongs to 

a totally imaginary quadratic extension ofQ, and the extension is then isomorphic 

to End{E) 0z Q. 

This notion of complex multiplication can be generalized to higher dimensional 

varieties through the following (cf. [20]): 

Definition 3.4.1. Let V he a rational Hodge structure such that V is also a K-

vector space for some CM-field K (i.e. a totally imaginary quadratic extension 

of a totally real number field), and such that the Hodge decomposition on V is 

stable under the action of K: 

xl/P'^ C {xeK,p,qeZ>o). 

In particular, K 4 End//od(V)- We will then say that V is a Hodge structure of 

CM-type (with field K). 

Now an n-dimensional projective variety X is said to be of CM-type if the 

rational Hodge structure of weight n on is of CM-type. 

Remark 3.4.1. This definition of rational Hodge structures of CM-type is more 

general than the one which defines a rational Hodge structure of CM-type to be 

one with commutative Mumford-Tate group (cf. [5]). 
I' 

The main result of this section is to show that the two Calabi-Yau 3-folds 

constructed in the last section are of CM-type. The proof is due to Bert van 

Geemen [21 . 
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Theorem 3.4.1. The Calabi-Yau 3-folds X^ and X7 constructed in Section 3.3 

are of CM-type. 

Proof. Let's consider Xs first. It is obtained by taking quotient Y^ = ^^/(pa), 

where E is the elliptic curve with j(E) = Q and g^ is an automorphism of order 

three of E^. Next one takes X3 to be a smooth crepant resolution of Y3. 

To see that Xs is of CM type one relates its H^ to the one of The most • 

explicit way to do this is to take the fiber product Z of E^ and X^ oyer Y^: 

Z——.丑3 

- ——^ n 

The variety Z is birational to E^. The image of Z in the product of E"^ and X3 is 

a codimension three subvariety (which may well be singular), and as such it has 

a cohomology class 

Using the Kiinneth decomposition of this cohomology group we get classes (com-

ponent of [Z]): 

[^]a,6-a e Q ) ③ H “ ( X 3 , Q ) . 

Poincare duality on E^ gives an isomorphism: 

丑"(^3，Q) ^ (炉’ Q y (̂ g dual vectoF space). 

Finally there is the isomorphism for vector spaces V and W: 

. V* ^W ^Rom{V,W). 

Putting all these together the [Z]afi-aS give homomorphisms which we denote by 

Z]b： 
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Of course the situation is symmetric, so we also get homomorphisms which we 

denote by [Z]l： 

Complexifying these Q-vector spaces and extending [Z]l C-linearly, the fact that 

the cohomology class of Z is of type (3,3) implies that the Hodge decomposition 

of these cohomology groups is preserved, so [Z]l induces C-linear maps [2]厂： 

： iP’q(X3, Q) 一 HP’q(E\ q). ‘ 

Now the main point is that the image under [Z]̂ '̂® of the holomorphic 3-form 

Us G i/3’o(j5^3) is non-zero in i/3，o(五3) This follows essentially from the fact that 

pulling back uj^ along Z X3 gives an algebraic 3-form u' on E^. Up to some 

scalar, is the image of ujz under [2"]，. One could also follow through the 

proof of the fact that X3 is CY to see that cû  comes from an uj' on E^ (which 

is the unique, up to scalar multiple, holomorphic three form on E'̂  (note u' is 

invariant under "3)). 

Using the automorphism of E'̂  induced from the automorphism of order three 

on E and the Kiinneth decomposition of it is not hard to see that 

there is a two dimensional Q-vector space V in such that V 0 q C , a 

two dimensional complex subspace of C), satisfies: 

(g)Q c = Co；' e c ^ . 

The image of V under [Z]^ in Q) is then a two-dimensional (Q-vector space 

whose complexification contains u^ and hence: 

‘ ( [ Z H V ) 0 Q C = 0 H'^'^IX,). 

Thus to show that Xs is of CM type is the same as showing that V is of CM-type. 

Let's look more closely at the vector space V in Note first of all 

that since V ^QC should contain if3’o，^hich is contained in H � �0 � //i.o， 
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we should look for it in the summand H = H\E,Q) <S> H\E,Q) 0 

this is an 23 = 8 dimensional Q vector space. Let 小、be the automorphism of 

order three of H^{E,Q) induced by Ca on the z-th factor. 

Note that 

知 3 = (3的 for i = 1,2,3. 

Thus 4>2小;1 and 於3</)�i act trivially on Now let V be the subspace of H on 

which (f)2(f>î  and 於3(/>�i act trivially. It is by definition a Q vector space and its 

complexification contains uĵ . To see it is two dimensional, we use the basis 

DZI A DZ2 A DZ3, DZI A DZ2 A DZ3,..., DZI A DZ2 A D乏3, DZI A D乏2 A DZ^ 

of y 0 C. Since acts by the cube root of unity Cs on dzi and is trivial on the 

other two dzj, dzj and acts by the cube root of unity Ca on d乏“ it is easy to check 

that only two of the 8 basis vectors are invariant, these are uĵ  and ^3, which gives 

the result. 

Now on V there still acts the automorphism induced by ^i, it has order three 

and preserves the Hodge decomposition of V 

So by definition, the V we just constructed does have CM. 

For X7, we have to take into account the fact that where C is the 

Klein curve, splits (in many ways) as the direct sum 

where E' = C/Z + The splitting can be seen by a result of Prapavessi 

27] which says that A7 ^ E'^. 

Tensor products of copies of W will split, as Hodge structures, into one and 

two dimensional simple Hodge substructures. The one dimensional ones are of 

type {p,p) of course, the two dimensional ones have CM by Q ( v ^ ) -
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In particular, there will be a two dimensional Q-vector spaces W in Q) 

such that uj'-j G W (8)qC, where u'-j is the unique three form on C^ invariant under 

97-

There will again be a correspondence between E'^ and X7，it will induce an 

isomorphism between W and its image in Q) and the complexification of 

the image of W' will contain UT. This implies that also Xj has CM by 

• 

I. 

\ 



Chapter 4 

Calabi-Yau Manifolds by 
Coverings 

In this chapter we construct Calabi-Yau manifolds by cyclic coverings. The em-

phasis is on the construction of double octics, following Cynk [13], [11]. 

4.1 Cyclic Coverings 

We begin with cyclic coverings of P" branched along smooth divisors. Let c? > 2 

be an integer and let D he a smooth and reduced effective divisor in P" with 

0]pn(jD) = 0]pn(/) such that d I. That is, there exist an integer k > I such that 

I = dk, so that 

.. Orn {D) = Opn {dk) = CV (A;产. 

Consider the <i-cyclic covering tt : X — P " branched along D. Then by standard 

theory of cyclic coverings (cf. [1], 1.17)，we have 
I 

K x = � CVn(/c)®(“)）= 7r*0pn( - (n + 1) + k(d — 1)), 

which is trivial if and only if k{d - 1) = n + 1. We also have, in any case 
d-i 

j=0 

56 
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The fact that tt is finite then implies 

h'(Ox) = h'iTT^Ox) 

=h\Orn) + h\Orn{-k)) + ... + h\Opn{-{d - l)k)) 

= 0 

for 0 < 2 < n. Hence if we are given integers d>2 and k>l with k{d—l) = n+1, 

then the (i-cyclic covering X of P" branched along a reduced and smooth divisor 

D of degree I = dk gives us a smooth Calabi-Yau n-fold. By the adjunction 

formula, the Euler number of X is given by 

e(X) = - { d - l)e(D) 

-d{n + l)-(d-l) 广 + 1) (dkr". 

For example, a double(respectively triple) cyclic cover of P^ branched along a 

smooth octic(respectively sextic) surface gives a smooth Calabi-Yau 3-fold with 

Euler number -296(respectively -204). 

Remark 4.1.1. The above constructions can be generalized to Fano manifolds. 

For the case of Fano three folds, see [10]. 

4.2 Admissible Blow-ups 

In order to produce even more examples, we may introduce singularities in the 

branch locus and see if there are any suitable smooth models of the coverings. 

Our strategy is to consider an embedded resolution of the branch locus. However, 

to make sure that the canonical divisor does not change, we must be careful in 

choosing the types of blow-ups. This leads to the notion of admissible blow-ups, 

introduced by Cynk and Szemberg [12]. 

We restrict ourselves to dimension 3 and double covers, so let y be a smooth 

3-fold, Z) C y an even, reduced divisor and Z C D a, smooth irreducible proper 
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subvariety. Consider the blow-up a :Y with center Z and denote by E the 

exceptional divisor. Let TUZ/D be the generic multiplicity of D at Z�and let D 

be the strict transform of D. Define the divisor D* cY hy 
< ~ 

D if mz/D is even; 
D* := 

D + E i f rriz/D i s o d d . 
V 

Note that D* is the only reduced and even divisor such that D < D* < CF*{D) 

where by (T*{D) we mean the total transform of D. The key definition is the 

following 

Definition 4.2.1. The blow-up a : Y ^ Y is called admissible (with respect to 

double covers) if 

Now we determine all the admissible blow-ups: 

Proposition 4.2.1. On a smooth 3-fold Y, the only possible admissible blow-ups 

are as follows: 

1. the blow-up of a curve Z with m^/D = 2 or 3; and 

2. the blow-up of a point Z with mz/D == 4 or 5. 

Proof. Let r be the codimension of Z in Y. Define 
F 

0 if mziD is even; 
爪z/D) = ^ ：= < 

1 if mzjD is odd. 
\ 

Then we have 

‘ KY'^ (7*KY + (R- 1)E, D* = A*D - {MZ/O _ £)E. 
> 

Hence 

% + Id* - c7*(Ky + I d ) + (r - 1 -

Thus a is admissible if and only if tuz/d = 2(r - 1) +e. The only possible cases 

are just as listed. • 
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4.3 Double Covers of P̂  Branched Along Octic 

Arrangments 

The result of Proposition 4.2.1 allows us to choose suitable branch loci. These 

are surfaces which locally look like an arrangement: 

Definition 4.3.1. Let Si,... ,S.r be smooth, irreducible surfaces in a smooth 3-

fold U and let S be the sum of SY, ...�S” Then S is called an arrangement if the 

followings are satisfied: 

1. For any i + j, Si and Sj either intersect transversally along a smooth irre-

ducible curve Cij or they are disjoint; and 

2. The curves Cij and Cki either coincide or they intersect transver sally or they 

are disjoint. 

We call an irreducible curve C C 5 an i-fold curve if exactly i of the surfaces 

…，Sr pass through it; and a point p £ S a, j -fold point if exactly j of the 

surfaces «Si，...，SV pass through it. In case U = F^ and Si,... ,Sr are surfaces 

of degree di,…，dr respectively with di + ... + dr = S, then S is called an octic 

arrangement. From now on, we shall focus on this case and construct Calabi-

Yau 3-folds as double octics, i.e. double coverings of P^ branched along octic 

arrangements. . 

Theorem 4.3.1. Let S CF^ be an octic arrangement with no q-fold curves for 

q> 4： and no p-fold points forp > 6. Then there exists a sequence a = aio.. .oag ： 

P* —>• IP3 of admissible blow-ups together with a smooth, even divisor S* C P* such 

that (7{S*) = S and the double covering X off* branched along S* is a smooth 

Calabi-Yau 3-fold. 

Proof. We shall construct an explicit resolution of 5 C P^ through admissible 

blow-ups. This consists of 4 steps. 
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I. We first blow up all 5-fold points, ai : P^) ^ P^ Let p e P^ be a 5-fold 

point. Then the exceptional divisor E is isomorphic P .̂ Depending on the 

number of triple curves (i.e. 3-fold curves) on which p lies, we get one of 

the following configurations on E: 

Case I-l Case 1-2 Case 1-3 . 

Denote by 5i the sum of S and the exceptional divisors. Take Si to be the 

new branch locus. Note that Si contains no 5-fold points, but there are 5 

new double lines and new 3-fold and 4-fold points. 

II. Secondly we blow up triple curves, â  ： 一 Let C C 5i be a 

triple curve. The exceptional divisor is JE = C x P^ We have the following 

configuration on E: 
Li L2 • • • Lt 

Ci  
C2  
C3  

Case II C X P^ 

Let S2 be the new branch locus consisting of plus the exceptional divisors. 

Now S2 does not have any 5-fold points or triple curves, but we get new 

double lines and 4-fold points. 

III. Next we blow up all 4-fold points in S2, (J3 ： P̂ )̂ — Let p G be a 

4-fold point. The exceptional divisor \s E = P ,̂ and the configuration on » 
E is as follows: 

Case III 
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Let S3 := S2 be the new branch locus. Then the only singularities of S3 are 

double lines and triple points. Note that in this case, no new singularities 

are introduced. 

IV. In the final step, we blow up all the double curves, (J4 : P* = P̂ ^̂  — 

Let C C 53 be a double curve. The exceptional divisor is E = C x with 

the following configuration: 

L\ L2 • • • Lt 

Ci  

C2  

Case IV C X pi 

Take S* = S4 := S^. Then S* is a smooth and even divisor of P*. 

Let a := (74 o CJ3 o (72 o o"! : P* p3’ and let tt : X —> P* be the double cover 

branching along S*. Then since all the blow-ups (7“ i = 1,2, 3,4，are admissible, 

we have, by the adjunction formula, 

Kx = + = + ^5)) = 0乂， 

and by Serre duality, 

�� =/ll(Olp3) + /l2(Op3) 

= 0 . 

Hence X is a smooth Calabi-Yau 3-fold. • 
> 

4.4 The Euler Number of X 

First of all, we introduce some notations: 

e*(5) = sum of Euler numbers of all components of S\ 
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Ei(S) = sum of Euler numbers of i-fold curves of S; 

Pj(S) = number of isolated j-fold points on S; 

Pj(S) = number of isolated j-fold points lying on exactly k triple curves. 

We shall sometimes suppress the parameter S when there is no danger of confu-

sion. Now we compute the changes of these data under an admissible blow-up. 

Proposition 4.4.1. Let S be an arrangement in a 3-fold U. Let a :V ^ U be 

a blow-up of the type I, II, III or IV described in the proof of Theorem 4.3.1 with 

center Z, exceptional divisor E and S* = S ^ eE. Then we have 

HU) - e*{S) + 2E2{S) — ps{S) + 6五3(50 + l2pl{S) + + 6pl{S) 

=MV) - + 2E认S, - + 6Es(S*) + 12pi(5*) + 9pliS*) + 6pl{S*) 

Proof. The proof is by explicitly verifying the above formula for each type of 

blow-up. In fact, we have the following table from [13]. Note that if Z is a g-fold 

line then t denotes the number of {q + l)-fold points on Z. 

type e(V) - e{U) e*{S*)-e*{S) £2(8*) - E^jS) E^jS^) - E^jS) 

I-l 2 8 10 0 

1-2 2 8 10 0 

1-3 2 8 10 0 

II e(Z) 2e(Z) +1 3e(Z) + 2t -e(Z) 

HI 2 4 0 0 

IV e(Z) t -e{Z) 0 
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"type 1 3 � PT{S*)-PT{S) pliS^)-pl{S) PUS*)-PI{S) 

I-l 10 -1 0 0 
1-2 7 0 -1 0 

1-3 4 0 0 -1 

II 0 0 0 

III 0 0 0 0 

IV -t 0 0 0 

• 
Take U = F^ and apply the proposition to each blow-up in the sequence 

(7 = (7i O (72 O (73 O 0-4 : y P* p3. Note that S* (in Theorem 4.3.1) is smooth, 

and for a double cover, e{X) = 2e(V) - e*{S*). Hence we get the following 

corollary of the above proposition: 

Corollary 4.4.1. For the 3-fold X constructed in Theorem 4.8.1, we have 

eiX) = 8 - e%S) + 2五2(5^ - PsiS) + 6丑3(5^ + 12^^(5) + 9pJ(5) + 6pl{S). 

� We shall now compute the invariants used in the formula for e(X). 

Lemma 4.4.1. For an octic arrangement S C P̂； we have 
r 

e*{S) = + and 
• i = l 

2E2{S) + 6Es(S) = 
i<3 

Proof. The first formula follows from the adjunction formula. For the second 

one, note that each triple curve is counted 3 times. Again by the adjunction 

formula, if C is a smooth complete intersection of surfaces of degree di and dj, 

then e(C) = { i - d i - dj)didj. This gives the second formula. • 

Observe that since deg(5) = 8’ there are only two possibilities: 

1. either there is 1 triple elliptic curve and no more triple curves, or 

2. there are only triple lines. 
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Lemma 4.4.2. For an octic arrangement in P^ with I3 triple lines and no triple 

elliptic curves, we have 

P3+P4 + lOps — (PI +P5 + 2P5 -h) = didjdk] and 
i<j<k 

5I3 = PI + '^PI + 

Proof. For the first formula, the right-hand-side is the number of triple points 

in case all intersections are transversal and reduced. Hence in case there are no 

triple lines, each triple point is counted by (3) = 1 time, each 4-fold point is 

counted by (3) = 4 times, and each 5-fold point is counted by (3) = 10 times. 

However, when triple lines do appear, any 4-fold point lying on such a line will 

only be counted by 4 — 1 = 3 times (if counted properly). Similarly, a 5-fold point 

lying on exactly 1 triple line is counted by only 10 - 1 = 9 times; and a 5-fold 

point lying on 2 triple lines will be counted by only 10 — 2 = 8 times. One triple 

line corresponds to each success count. The first formula follows. 

The second formula follows from the fact that the left-hand-side is the ex-

pected number of intersection points of 3 planes with the remaining quintic, 

while the right-hand-side is the number counted with multiplicities. • 

By Corollary 4.4.1, Lemma 4.4.1 and Lemma 4.4.2, we finally get: 

Theorem 4.4.1. If S C P^ is an octic arrangement with no triple elliptic curves, 

then the Euler number of the Calabi- Yau 3-fold X constructed as a smooth model 

of the double cover of p3 branched along S is given by 
r 

= 8 - - ^d] + + - ^ d^djd^ 
»=1 i<j i<j<k 

‘ . + 3ri + 16pl + ISpl + 20pl + h. 

Remark 4.4.1. In [8], Cynk considered octic arrangements of surfaces with iso-

lated singularities (of multiplicities 2, 4 and 5). Although this is just a slight 

generalization of the theory we presented here, more new examples of Calabi- Yau 

3-folds can indeed be constructed. We quote the main result here without proof: 



On Some Constructions of Calabi-Yau Manifolds . 65 

Theorem 4.4.2 (Theorem 1.1 in [8]). If S C P̂  is an octic arrangement 

which contains isolated q-fold points for g = 2,4,5； then the double cover of P^ 

branched along S has a smooth model X which is a Calabi- Yau 3-fold. 

Moreover, if S contains no triple elliptic curves, then 

r 
e(X) = 8 - - 4c?- + Qdi) + 2 ̂ ( 4 - di - dj)didj - ^ didjdk 

i=l i<j i<j<k 
+ 3pi + + ISpl + 20pl + /3 + 2m2 + 36爪4 + 56m5 

where rUg is the number of isolated q-fold points for q = 2,4,5. 

The resolution of 4-fold and 5-fold isolated points are exactly the same as in 

the proof of Theorem 4.3.1. The main difficulty lies in the resolution of 2-fold 

isolated points, or nodes, which requires the use of so-called small resolution. 

4.5 The Hodge Numbers of X 

To compute the Hodge numbers of the Calabi-Yau 3-fold X , we follow the ap-

proach of Cynk and van Straten [12]. As mentioned before, for a Calabi-Yau 

3-fold X, H'''\X) = ^ H\Tx), is the space of infinitestimal deforma-

tions of X. Hence we may compute /i^'^(X) by studying the latter. We start with 

the following lemma: 

Lemma 4.5.1. Let TT : X Y be a double cover of a smooth algebraic variety 

branched along a smooth divisor D cY with L 阶=Oy(L>) for some line bundle 

C on Y. Then 

• H\TX) ^ H\Ty{log D)) e H\Ty 0 广 1) 

where TV (log D) is the logarithmic tangent sheaf, which is defined to be the sub-

sheaf of the tangent sheaf Ty consisting of derivations ofOy which sends the ideal 

sheaf of D in Y into itself. 
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Proof. By the general theory of cyclic coverings [18], we have 

Since tt is finite, 

H\Tx) ^ H\TT.TX) = H\TY{\og D)) 0 H\TY 0 

• 
For our purpose, take Y = f* emd D = S* C P*, and choose a line bundle C* 

on P* such that 广 = Or'(S*). Then the double cover tt : X — P* branched 

along S* gives 

= ^ i/i(Tp.(log S*)) e (8) C*''). 

The problem then reduces to determining the two terms on the right-hand-side. 

We shall first deal with % 

Consider a blow-up a : Y Y along a smooth subvariety Z C Y. Denote 

by E the exceptional divisor of a and let m G Z be such that D* = a*D - mE, 

where D is an even, reduced divisor in Y, and D* is the only even and reduced 

divisor in Y such that D < D* < a*D. Actually m = so it is even. 

Define 
~ rn 

and let k := codimy(Z) - f - 1. Then we have the following lemma: 

Lemma 4.5.2. Suppose k = 0, then 

[H'{TY % £-1) © H%det MZIY 0 tf codimY(Z) = 2’ 

where MZ/Y is the normal bundle of Z in Y. 
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Proof. We have the exact sequence 

0 -> (7* 叫 ( ^ C ^ K y ) ̂ n^y^C^Ky ③ 0 Ky) — 0. 

As TT is finite, we have 

(T*{Oy) = OY, R'(J.{Oy) = 0，for i > 1，and 

= 0, = Oz, = 0 ioi i > 2. 

By the projection formula and the above exact sequence, we get 

= 0 for 2 > 2. 

The Leray spectral sequence then gives 

iT-i⑴‘ % 1% Ky)兰 ^C^Ky)® Ky). 

The result now follows from Serre duality. • 

By this lemma, Proposition 4.2.1 and the fact that K^s = = /：-\ 

we conclude that 

c c 

where the summation is over all blown up curves. If we further assume that S 

contains no triple elliptic curves, then a straightforward counting gives 

乂 } i<j 

Next we shall determine H\Tr. (log S*)). By Theorem 4.1 of [12], H\Tp*{\og S*)) 

is isomorphic to the space of equisingular deformations of 5 C P ,̂ which is defined 

as follows: 
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Definition 4.5.1. Given a pair D C Y where Y is a smooth algebraic variety 

and D is a divisor in Y. Let a :Y Y he a sequence a = c7„_i o . . . o ^o where 

each (Ti : Yi+i — Yi is a blow-up of a smooth subvariety Z�C I)\ C Yi, such that 

D* = is smooth, D* = D,Yo = Y and Yn = Y. Let rrii be an integer such 

that DT+i = cr*D* - rriiEi where Ei C Yi+i is the exceptional divisor of ai. Then 

an equisingular deformation of D cY is a simultaneous deformation of D cY, 

which has simultaneous resolution, i.e. which can be lifted to a deformation of 

C D* C Yi in such a way that the multiplicity of the deformation of D* along 

the deformation of Zi is at least rui. 

In our case, Y = Y = F* and D = S C P^ One of the key ideas of [12] 

is to describe the space of equisingular deformations of 5 C P^ (which is quite 

abstract) in a very concrete way. We shall recall the result here without proof. 

Denote by Jf the Jacobian ideal of S: 

J _ (df d f � 

where / is a homogeneous equation for S. Let Zi, i = 0 , . . . ,n - 1 be the 

multiple points and curves of the octic arrangement S, and rrii the corresponding 

multiplicities. Denote by I{Zi) the homogeneous ideal of 

Definition 4.5.2. The equisingular ideal of S CF^ is defined as 

n - l 

i = 0 

Now Theorem 4.5 of [12] states that 

Theorem 4.5.1. The space of equisingular deformations ofScF^ is isomorphic 

to the space of degree 8 forms in the quotient of the equisingular ideal modulo the 

Jacobian ideal. Hence we have 
\ 

//l(7Hlog 5*)) - ( / eg�/ J / )8 . 
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That is, {log S*)) = dim<c{leq[S)/Jf)^. And altogether, we have the 

following formula for the Hodge number 

hP(X、= dimc[Ieq ⑶ + 

c 
and if S contains no triple elliptic curves: 

/i2’i(X) = + 0 _ 5 - I dMdj 
i<j 

Remark 4.5.1. (i) The first term in the formula, i.e. the dimension of degree 8 

forms in the quotient of the equisingular ideal modulo the Jacobian ideal, can be 

computed using a computer algebra system, as in [11]. 

� Since X is a Calabi-Yau 3-fold and we have determined both e(X) and 

"2’i(X)，we can also compute = \e{X) + In this way, one 

may compile a large list of Calabi-Yau 3-folds together with their invariants by 

^sing computer. In [llj, Cynk and Meyer constructed such a list of examples that 

correspond to arrangements of eight planes defined over Q. Note that for these 

examples, 

i.e. all deformations of X come from equisingular deformations of S in P .̂ They 

produce seven rigid Calabi-Yau 3-folds (i.e. /i^.i = o； and 14 examples with 

/i2’i = 1，and with equations given (cf. [llj). 

4.6 iCS-Fibrations and Modularity 

Let X be a Calabi-Yau 3-fold which admits a K3-fibration，i.e. a proper and 

surjective mprphism 

, • pi 

such that the general fibres are iC3 surfaces. For any fibre F, we denote by 1(F) 

the number of irreducible components of F; and we also let p be the Picard rank 

of a general fibre. Then we have the following formula: 
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Theorem 4.6.1. 

" i ’ i ( X ) = p + l + ^ {1(F) - 1 ) 

reducible F 

where the summation is over all reducible fibres of 电. 

Sketch of Proof. Let 5 C P^ be the degeneration locus of YQ = and 

= <E>-̂ (yo). Let F = $一 1 � be a general fibre of By the results of Deligne 

in [16], we have the following maps ‘ 

where 6 o a is surjective and c is injective. The composite 

r -.= c o b o a : ^ H^{F,Q) 

is the so-called restriction map. Deligne's results tell us that r is a morphism of 

Hodge structures. But X is a Calabi-Yau 3-fold, we have = = 0 

and so 

Q ) = Q ) n = NS(X)^ 

where the last one is the Neron-Severi group of X. Hence we can regard r as the 

map 

r : NS{X)^ 4 NS{F)Q = H\F, Q ) n //"(F) 

defined over Q. Note that the kernel of r consists of the components in the fibres 

of We thus arrive at the inequality 

. . = p{X) < p{F) + 1 + ^ (/(F) — 1). 
‘ reducible F 

Now we look more closely at the map c : H^(Yo, R'^^.Q) — Still 

by Deligne's results, we know that actually 丑 o ( y ^ o ，丑 i s isomorphic to the 

part of NS{F)^ = n LP，I(F) invariant under monodromy. Hence it 

suffices to show that all algebraic cycles on the general fibre F are invariant 
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under monodromy. We shall see that this is the case for any (nonconstant) pencil 

of K3 surfaces. 

So suppose that $ : X ^ C is a pencil of K3 surfaces. Let F be a general 

fibre. Assume that F has degree 2n and let NS{F) ^ Z) = L = 

denotes the Neron-Severi lattice of F. There exists a coarse moduli space M2n 

for degree 2n polarized K3 surfaces, equipped (may be after base change) with a 

universal family ； M 2 n - Hence we have a proper morphism 

i； : C — M2n 

such that $ : X -> C is the pull-back family: 

X = C X场n知 ^ 而n 

C 么 Man 

But at the same time, we have the coarse moduli space MM for M-polarized 

surfaces for a primitive embedding of lattices M ^ L (cf. [17]). This is 

a subvariety (or submoduli) in the moduli space A^2n- For a fixed rank, say 

p，there are at most countably many subvarieties of each of which is the 

coarse moduli for M-polarized K3 surfaces for some M ^ L with ik M = p. 

Now the image of C under 冲 is an algebraic curve in M2n- Since there are 

just countably many such subvarieties, there must be one on which ip(C) have 

intersections at uncountably many points. This is possible only if the whole 

image ip{C) lies in that subvariety (or submoduli). Hence we can conclude that 

the family <!> : X C is the pull-back of the universal family associated to the 

coarse moduli space for iV«S(F)-polarized K3 surfaces. However, by construction, 

the algebraic cycles of a general fibre in the universal family are all invariant under 

monodromy. The result follows. • 

Remark 4.6.1. (i) The idea of the proof is suggested by Professor Kang Zuo. 
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� One can of course consider a pencil of Calahi- Yau n-folds such that the total 

space is a Calabi-Yau (n + l)-fold. Unfortunately, the proof we give here 

reZies essentially on the properties of the moduli spaces of K3 surfaces. The 

author does not know whether it can be generalized to higher dimensions. 

Consider the case when X i s a double octic. Fix a double line, i.e. a transversal 

intersection of two planes, in the arrangement. (Since it is an arrangement of 

eight planes, double lines always exist. In fact, a generic arrangement of eight 

planes has 28 double lines and 56 triple points as singularities.) Recall that in 

the embedded resolution of the branch locus, each double line has to be blown 

up. The blow-up of the fixed double line then induces a i^3-fibration on X: 

The fibration structure can also be seen as follows. Consider a plane (i.e. a 

P2) in P3 passing through the fixed double line. This plane will intersect with 

the six remaining planes, i.e. those on which the double line does not lie, in six 

lines. These can be considered as an arrangement of six lines on P ,̂ which will 

generally give rise to a K3 surface, just like an octic arrangement generally gives 

us a Calabi-Yau 3-fold. Turning around the plane along the fixed double line, so 

that it cuts the six planes in different directions, then gives us a pencil of K3 

surfaces. In this way, it is easy to see that blowing up the double line gives us 

a i^3-fibration on X. We should remark that the idea of this construction of 

们-fibrations on X is also due to Professor Zuo. 

Now we give some examples and use Theorem 4.6.1 to calculate the Picard 

‘rank of a general fibre. We will make use of the examples given in the table in 
11. 

Example 4.6.1 Consider Arrangement no.2 in [11]. The equation of the octic 
arrangement is given by • 

xyzt{x + y){y + z){z + t){t + 工）=0 
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where (x : y: z : t) denote the homogeneous coordinates on P^ The non-generic 

singularities (i.e. those other than triple points and double lines) are given as 

follows: 

pI points : ( 1 : 0 : 0 : 0 ) , ( 0 : 1 : 0 : 0 ) , ( 0 : 0 : 1 : 0 ) , ( 0 : 0 : 0 : 1 ) , 

pI points : ( 1 : - 1 : 0 : 0 ) , ( 0 : 1 : - 1 : 0 ) , ( 0 : 0 : 1 : -1 ) , ( 1 : 0 : 0 : -1)， 

P4 points : (1 : -1 : 1 ： -1)， 

triple lines : x = y = 0, y = z = z = t = 0, t = x = 0. 

The Hodge numbers of X are "i，i(X) = 70 and = 0, so that X is a rigid 

Calabi-Yau 3-fold. Fix the double line x + y = y + z = Oa^nd consider the K3 

fibration induced by the blow-up of this line. One may check that there are 3 

reducible fibres F2 and F3 in the fibration and l(Fi) = /(F2) = 21，/(F3) = 11. 

Hence the Picard rank of a general fibre in this fibration is given by 

p = 70 — 1 - (20 + 20 + 10) = 19. 

Example 4.6.2 Consider Arrangement no.85 in [11], with equation: 

(x - t)[x + t){y - t){y + t){z — t){z + t){x + y + z- t){x + y + z + t) = 0. 

There are only pj points other than generic singularities: 
» 

P4 points : (1 : 1 : _1 : -1), (1 ： - 1 ： 1 ： -1), (1 ： - 1 ： —1 ： 1)’ . 

(1 ： 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 ： 0)， 

( 1 : - 1 : 0 : 0 )，（ 0 : 1 : - 1 : 0 ) , ( 1 : 0 : - 1 : 0 ) , 

( 1 : 1 : - 1 : 1 ) ’ ( 1 ： - 1 : 1 : 1 ) , ( - 1 : 1 : 1 : 1 ) . 
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The Hodge numbers of X are = 44 and = 0’ so X is also a rigid 

Calabi-Yau 3-fold. Fix the double line y-ht = z + t = 0 and consider the K3 

fibration induced by the blow-up of this line. In this case we have 4 reducible 

fibres Fi, F2, F3 and F4 in the fibration and l(Fi) = /(F2) = 11，/(F3) = /(F4) = 3. 

Hence the Picard rank of a general fibre in this fibration is given by 

p 二 44 - 1 — (10 + 10 + 2 + 2) = 19. 

Example 4.6.3 Consider Arrangement no.l in [11]. The equation is given by 

工 yzt(x + y){y + z){z + t){Bt + Ax) = 0 

where (A ： B) is a generic point in pi. The non-generic singularities are given as 
follows: 

pI points : ( 1 : 0 : 0 : 0 ) , ( 0 : 1 : 0 : 0 ) , ( 0 : 0 : 1 : 0 ) , ( 0 : 0 : 0 : 1 ) , 

PI points : ( 1 : - 1 : 0 : 0 ) , ( 0 : 1： - 1 : 0 ) , ( 0 : 0 : 1 : - 1 ) , (B : 0 : 0 : -A), 

triple lines : x = y = 0, y ^ z = 0, z = t = 0, t = x = 0. 

The Hodge numbers of X are = 69 and = 1. Fix the double 

line a: = 2/ + ^ = 0 and consider the KZ fibration induced by the blow-up of this 

line. There are 3 reducible fibres F!’ F2 and F3 in the fibration and l{Fi) = 30’ 

� F 2 ) = 20, 1[F3) = 3. Hence the Picard rank of a general fibre in this fibration 
is given by ‘ 

p = 69 - 1 - ( 2 9 + 19+ 2) = 18. 

Example 4.6.4 Consider Arrangement no.83 in [11], with equation: 

{x-t){x+t){y-t){y+t)iz-t){z+t){Ax + By-^Bz-At){Ax + By-^Bz + At) = 0 

and {A : Bj denotes a generic point in pi. 

_ 
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There are also only p^ points other than generic singularities: 

Pa points : (1 : 1 : - 1 : -1)，（1 : - 1 : 1 : -1)， 

( 1 : 0 : 0 : 0 ) , ( 0 : 1 : 0 : 0 ) , ( 0 : 0 : 1 : 0 ) , 

{ B : - A : 0 : 0), (0 ： 1 ： - 1 ： 0), { B : 0 : - A : 0), 

(1 : 1 : - 1 : 1)，(1 ： - 1 ： 1 ： 1). 

The Hodge numbers of X are = 41 and = 1, so X is also a rigid 

Calabi-Yau 3-fold. Fix the double line • + i == 2 + i = 0 and consider the KZ 

fibration induced by the blow-up of this line. There are 4 reducible fibres Fi, F2, 

厂3，F4 and /(Fi) = /(F2) = 11’ _ = /(F4) - 2. Hence the Picard rank of a 

general fibre in this fibration is given by 

p = 4 1 - 1 - ( 1 0 + 1 0 + 1 + 1) = 18. 

Remark 4.6.2. Note that the rigid Calabi-Yau 3-folds in Example 4.6.1 and 4.6.2 

are special fibres (when A = B = 1) in the one dimensional families in Example 

4-6.3 and 4-6.4 respectively. 

In [35], Sun, Tan and Zuo considered Calabi-Yau 3-folds fibred by non-constant 

semi-stable K3 surfaces. They get the following result about modularity of 

Calabi-Yau 3-folds: 

Theorem 4.6.2. ([35l, Corollary O.4) Let f : X be a Calabi-Yau 3-fold 

fibred by non-constant semi-stable K3 surfaces. Then the following hold true: 

� If — iterated Kodaira-Spencer map of f is non-zero, then f has at least 

, 4 singular fibres. If f has exactly 4 singular fibres, then X is rigid, the 

general fibres off have Picard number 19 and X is hirational to the Nikulm-

Kummer construction of a square product of a family of elliptic curves g : 

五— P i . After passing to (if necessary) a double cover E' E, the family 

9' • E' ^ pi is one of the 6 modular families of elliptic curves constructed 

by Beauville. 
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� If the iterated Kodaira-Spencer map of f is zero, then f has at least 6 

singular fibres. If f has exactly 6 singular fibres, then X is non-rigid, the 

general fibres of f have Picard number 18 and ~ H/T, where T is a 

subgroup of 5X(2’ Z) of index 21 

This theorem shows that, among others, the modularity of some rigid Calabi-

Yau 3-folds fibred by semi-stable K3 surfaces can directly be seen from their 

geometry. Unfortunately, the examples we give above do not fit in this theorem 

because those fibmtions are not semi-stable, although it is reasonable to expect 

that semi-stability does not affect the modularity. 

Nevertheless, Cynk and Meyer have checked (in [11]) that the 7 rigid Calabi-

Yau 3-folds they constructed, including the two examples above, are indeed mod-

ular in another sense, which is described as follows. Let X be a Calabi-Yau 3-fold 

defined over Q. Assume that X has a suitable integral model. The L-series of 

X is then defined to be the L-series of the Galois representation on 

That is, 

The modularity conjecture for rigid Calabi-Yau 3-folds is the following (cf. [34]): 

Conjecture 4.6.1. Any rigid Calabi-Yau 3-fold X defined over Q is modular 

in the sense that the L-series of X coincides with the Mellin transform of the 

L-series of a cusp form f of weight 4 on ToiN), where N is a positive integer 

divisible by the primes of bad reduction. More precisely, we have, up to a finite 

Euler factor, 

‘ , = for some f e SJXoUV)). 

‘ ‘ C y n k and Meyer verified this conjecture for the 7 rigid Calabi-Yau 3-folds 

they constructed. It is interesting to know how we can see the modularity directly 

from geometry, as in Theorem 4.6.2. In fact, we already have some information, 

at least for the examples we consider. For instance, for the two rigid Calabi-Yau 
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3-folds we consider, we have found i^3-fibrations on them whose general fibres 

have Picard number 19. But the moduli space of M-polarized K3 surfaces with rk 

M = 19 is one-dimensional and is an arithmetic quotient of bounded symmetric 

domain. This suggests that the i^S-fibrations, or the rigid Calabi-Yau 3-folds, 

are modular. On the other hand, for the Calabi-Yau 3-folds with h^'^(X) = 1， 

we have found 们-fibrations whose general fibres have Picard number 18. We 

do expect that they are modular, but it remains to give a sounding geometric 

picture. 

» 
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