
MATH2050A: Analysis I (2018 1st term)

1 Compact Sets in R

Throughout this section, A always denotes a subset of R.

We say that a sequence (xn) in A is convergent in A if there is an element ′′a ∈ A′′ such
that for every ε > 0, there is a positive integer N so that |xn − a| < ε whenever n ≥ N . For
example, the sequence (1/n) is convergent in R but it is not convergent in (0, 1].

When we consider the case A = R, it is simply to say that a sequence is convergent if its
limit exists.

On the other hand, a subsequence (xnk
)∞k=1 of (xn) means that (nk)

∞
k=1 is a sequence of

positive integers satisfying n1 < n2 < · · · < nk < nk+1 < · · · , that is, such sequence (nk) can
be viewed as a strictly increasing function n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Proposition 1.1 Let (xn) be a sequence in R. Then the following statements are equivalent.

(i) (xn) is convergent.

(ii) Any subsequence (xnk
) of (xn) converges to the same limit.

(iii) Any subsequence (xnk
) of (xn) is convergent.

Proof: Part (ii) ⇒(i) is clear because the sequence (xn) is also a subsequence of itself.
For the Part (i) ⇒ (ii), assume that lim xn = a exists. Let (xnk

) be a subsequence of (xn).
We claim that limxnk

= a. Let ε > 0. In fact, since limxn = a, there is a positive integer N
such that |a− xn| < ε for all n ≥ N . Notice that by the definition of a subsequence, there is a
positive integer K such that nk ≥ N for all k ≥ K. So, we see that |a−xnk

| < ε for all k ≥ K.
Thus we have limk→∞ xnk

= a.
Part (ii) ⇒ (iii) is clear.
It remains to show Part (iii) ⇒ (ii). Suppose that there are two subsequences (xni

)∞i=1 and
(xmi

)∞i=1 converge to distinct limits. Now put k1 := n1. Choose mi′ such that n1 < mi′ and
then put k2 := mi′ . Then we choose ni such that k2 < ni and put k3 for such ni. To repeat
the same step, we can get a subsequence (xki)

∞
i=1 of (xn) such that xk2i = xni′

for some ni′

and xk2i−1
= xmj′

for some mj′. Since by the assumption limi xni
6= limi xmi

, limi xki does not
exist which leads to a contradiction.
The proof is finished. ✷
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Definition 1.2 We say that A is a closed subset of R (or closed set for simply) if it satisfies
the condition: if (xn) is a sequence in A and the limit lim xn exists, then lim xn ∈ A.

Example 1.3 (i) The empty set is a closed subset of R.

(ii) The union of finitely closed subintervals is a closed set.

(iii) The set of integers Z is a closed set.

(iv) The set of all rational number Q is not a closed set.

The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 1.4 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \ A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

We now recall the following important theorem in R (see [1, Theorem 3.4.8]).

Theorem 1.5 Bolzano-Weierstrass Theorem Every bounded sequence in R has a conver-
gent subsequence.

Definition 1.6 A subset A of R is said to be compact if for every sequence in A has a con-
vergent subsequence in A, that is, if (xn) is a sequence in A, then it has a subsequence (xnk

)
that converges to some element in A.

Example 1.7 (i) Every finite subset is compact.

(ii) Every closed and bounded interval is compact.
In fact, if (xn) is any sequence in a closed and bounded interval [a, b], then (xn) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (xn) has a convergent
subsequence (xnk

). Notice that since a ≤ xnk
≤ b for all k, then a ≤ limk xnk

≤ b, and
thus limk xnk

∈ [a, b]. Therefore A is compact.

(iii) (0, 1] is not compact. In fact, if we consider xn = 1/n, then (xn) is a sequence in (0, 1]
but it has no convergent subsequence with the limit sitting in (0, 1].

Theorem 1.8 Let A be a subset of R. Then A is compact if and only if A is a closed and
bounded subset of R.

Proof: For showing the necessary condition, assume that A is compact. We first claim that A
is bounded. Suppose not. We suppose that A is unbounded. If we fix an element x1 ∈ A, then
there is x2 ∈ A such that |x1−x2| > 1. Using the unboundedness of A, we can find an element
x3 in A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same step, we can find a sequence
(xn) in A such that |xn − xm| > 1 for n 6= m. Thus A has no convergent subsequence. Thus A
must be bounded.
Next, we want to show that A is closed in R. Let (xn) be a sequence in A and it is convergent.
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It needs to show that limn xn ∈ A. Note that since A is compact, (xn) has a convergent
subsequence (xnk

) such that limk xnk
∈ A. Then limn xn = limk xnk

∈ A. Thus, A is closed.
Conversely, assume that A is closed and bounded. Let (xn) be a sequence in A and thus (xn) is
a bounded sequence in R. Then by the Bolzano- Weierstrass Theorem, (xn) has a subsequence
(xnk

) which is convergent in R. Since A is closed, limk xnk
∈ A. Therefore, A is compact. ✷

Definition 1.9 A subset A of R is said to have Heine-Borel property if for any open intervals
cover {Jα}α∈Λ of A, that is, each Jα is an open interval and

A ⊆
⋃

α∈Λ

Jα,

we can find finitely many Jα1
, .., JαN

such that A ⊆ Jα1
∪ · · · ∪ JαN

.

Example 1.10 (0, 1] does not have Heine-Borel property. In fact, if we put Jn = (1/n, 2)
for n = 2, 3..., then (0, 1] ⊆ ⋃∞

n=2 Jn, but we cannot find finitely many Jn1
, ..., JnK

such that
(0, 1] ⊆ Jn1

∪ · · · ∪ JnK
.

Let us first recall one of the important properties of real line.

Theorem 1.11 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞

n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. ✷

Theorem 1.12 (Heine-Borel Theorem) Every closed and bounded interval [a, b] has Heine-
Borel property.

Proof: Suppose that [a, b] does not have Heine-Borel property. Then there is an open intervals
cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and m1

the mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered by
finitely many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s. Put
I2 := [a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.
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Then by the Nested Intervals Theorem, there is an element ξ ∈ ⋂

n In such that limn an =
limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0

.
Since Jα0

is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0
. On the other hand, there is

N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0

. It contradicts to the Property (c) above. The proof is
finished. ✷

Theorem 1.13 Let A be a subset of R. The following statements are equivalent.

(i) A has Heine-Borel property.

(ii) A is compact.

(iii) A is closed and bounded.

Proof: The result is shown by the following path (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Part (i) ⇒ (ii) will be shown by contradiction. Suppose that A has Heine-Borel property but it
is not compact. Then there is a sequence (xn) in A such that (xn) has no convergent subsequent
in A. Put F = {xn : n = 1, 2, ...}. Then F is infinite and hence for each element a ∈ A, there
is δa > 0 such that (a − δa, a + δa) ∩ F is finite. Indeed, if there is an element a ∈ A such
that (a− δ, a+ δ)∩F is infinite for all δ > 0, then (xn) has a convergent subsequence with the
limit a ∈ A. Let Ja := (a− δa, a+ δ1). On the other hand, we have A ⊆ ⋃

a∈A Ja. Then by the
Heine-Borel property of A, we can find finitely many a1, ..., aN such that A ⊆ Ja1 ∪ · · · ∪ JaN .
In particular, we have F ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, A must be finite. This
leads to a contradiction. Therefore, A is compact.

Part (ii) ⇒ (iii) follows from Theorem 1.8 at once.

It remains to show (iii) ⇒ (i). Suppose that A is closed and bounded. Then we can
find a closed and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open
intervals cover of A. Notice that for each element x ∈ [a, b] \ A, there is δx > 0 such that
(x− δx, x+ δx)∩A = ∅ since A is closed. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b] \A, then
we have

[a, b] ⊆
⋃

α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 1.12, we can find finitely many Jα’s and Ix’s, say Jα1
, ..., JαN

and Ix1
, ..., IxK

, such that A ⊆ [a, b] ⊆ Jα1
∪ · · · ∪ JαN

∪ Ix1
∪ · · · ∪ IxK

. Note that Ix ∩A = ∅
for each x ∈ [a, b] \ A by the choice of Ix. Therefore, we have A ⊆ Jα1

∪ · · · ∪ JαN
and hence

A has Heine-Borel property.
The proof is finished. ✷

2 Limits of functions

Throughout this, section, let A be a subset of R.
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Definition 2.1 A point c ∈ R is called a limit point (or cluster point) of A if for each r > 0,
there is an element x ∈ A such that 0 < |x− c| < r, that is,

(

(c− r, c+ r) \ {c}
)

∩A 6= ∅.
From now, let D(A) be the set of all limit points of A.

Example 2.2 (i) D(N) = ∅.

(ii) If we let A = [0, 1) ∪ {2}, then D(A) = [0, 1].

(iii) D(Q) = R (why?)

The following result can be shown by the definition directly.

Proposition 2.3 Using the notation as above, then A is a closed subset of R if and only of
D(A) ⊆ A.
Consequently, if D(A) = ∅, then A is closed in R automatically.

Theorem 2.4 Let f be a real-valued function defined a non-empty subset A of R and let c be
a limit point of A. Then the followings are equivalent.

(i) limx→c f(x) exists.

(ii) For each sequence (xn) in A with limn xn = c and xn 6= c for all n, the sequence (f(xn))
converges to the same limit.

(iii) For each sequence (xn) in A with limn xn = c and xn 6= c for all n, the sequence (f(xn))
is convergent.

(iv) For each ε > 0, there is δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ A satisfy
0 < |x− c| < δ and 0 < |y − c| < δ.

In this case limx→c f(x) = limn f(xn) whenever a sequence (xn) in A with limn xn = c and
xn 6= c for all n.

Proof: For (i) ⇒ (ii), suppose that L := limx→c f(x) exists. Then for each ε > 0, there is
δ > 0 such that |f(x)−L| < ε as x ∈ A with 0 < |x− c| < δ. So, if (xn) in A with limn xn = c
and xn 6= c for all n, then there is N such that 0 < |xn − c| < δ for all n ≥ N . This gives
|f(xn)− L| < ε for all n ≥ N and thus, lim f(xn) = L.
(ii) ⇒ (iii) is clear.
For showing (iii) ⇒ (iv), suppose that (iv) is not true. Then there is ε > 0 such that for each
δ > 0, there exist x and y in A with 0 < |x− c| < δ and 0 < |y − c| < δ but |f(x)− f(y)| ≥ ε.
By considering δ = 1/n for n = 1, 2, .., then we can find sequences (xn) and (yn) in A such
that xn 6= c 6= yn with limxn = lim yn = c but |f(xn) − f(yn)| ≥ ε for all n = 1, 2.... Now if
we put z2n := xn and z2n−1 := yn, then zn 6= c for all n and lim zn = c but limn f(zn) does
not exist because f(zn) is not a Cauchy sequence. Hence, (iv) does not hold and thus, we have
(iii) ⇒ (iv).
Finally, we want to show the implication (iv) ⇒ (i). Notice that since c is a limit point of A,
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we can find a sequence in A \ {c} such that limn xn = c. Then the condition (iv) tells us that
the sequence (f(xn)) is a Cauchy sequence and hence, L := lim f(xn) exists.
The part (i) follows if we can show L = limx→c f(x). Indeed, for each ε > 0, let δ > 0 be
found as in the condition (iv). Since limxn = c with xn 6= c and L := lim f(xn), we can
find a positive integer N such that 0 < |xN − c| < δ and |f(xN ) − L| < ε. Then by the
choice of δ, if x ∈ A with 0 < |x − c| < δ, we have |f(x) − f(xN )| < ε. This implies that
|f(x) − L| ≤ |f(x) − f(xN )| + |f(xN ) − L| < 2ε for all x ∈ A with 0 < |x − c| < δ. Hence,
L = limx→c f(x).
The last assertion follows from the proof of (i) ⇒ (ii) above.
The proof is finished. ✷

Definition 2.5 Let A be an unbounded above subset of R and f be a function defined on A.

(i) We say that a sequence (xn) in R tends to infinity, write limxn = ∞, if for each M > 0,
there is a positive integer N such that xn > M for all n ≥ N . (NOTE: the infinity is
NOT the limit in this case).

(ii) We say that f converges to a number L as x going to infinity if for each ε > 0, there
is M > 0, such that |f(x) − L| < ε whenever x ∈ A with x > M . In this case, write
lim
x→∞

f(x) = L.

Similarly, one can define f converges to L as n → −∞, L = lim
x→−∞

f(x), when A is not bounded

below.

Proposition 2.6 Using the notation as above, the followings are equivalent.

(i) lim
x→∞

f(x) exists.

(ii) (f(xn)) converges to the same limit for every sequence (xn) in A with lim xn = ∞.

(iii) (f(xn)) is convergent for every sequence (xn) in A with lim xn = ∞.

(iv) For every ε > 0, there is M > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ A with
x, y > M .

In this case limx→∞ f(x) = limn f(xn) for every sequence (xn) in A with lim xn = ∞.

Proof: The proof of (i) ⇒ (ii) and (iii) ⇒ (iv) are similar to the proof of Theorem 2.4.
The implication (ii) ⇒ (iii) is clear.
It remains to show (iv) ⇒ (i). Suppose that (iv) holds. Since A is not bounded above, we
can find a sequence (xn) in A such that lim xn = ∞. By considering ε = 1 in the condition
(iv), there is M1 > 0 such that |f(x) − f(y)| < 1 for all x, y ∈ A with x, y > M1. Since
limxn = ∞, we can find a positive integer N1 such that xn > M1 for all n ≥ N1. This
implies that |f(xn)− f(xN1

)| < 1 for all n ≥ N1 and thus, |f(xn)| < |f(xN1
)| + 1 all n ≥ N1.

So, (f(xn)) is a bounded sequence. The Bolzano-Weierstrass Theorem tells us that there is a
convergent subsequence (f(xnk

)) of f(xn). Put L := limk f(xnk
). The implication (iv) ⇒ (i)

follows from limx→∞ f(x) = L. In fact, let ε > 0 and let M be a positive number as found in
the condition (iv). Notice that since limn xn = ∞, we also have limk xnk

= ∞. Thus, we can
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choose a positive integer K large enough so that |L − f(xnK
)| < ε and xnK

> M . Hence, if
x > M , we have

|f(x)− L| ≤ |f(x)− f(xnK
)|+ |f(xnK

)− L| < 2ε.

So, limx→∞ f(x) = L as required.
The last assertion follows from the proof in (i) ⇒ (ii) at once. The proof is finished. ✷

3 Continuous Functions

Throughout this section, let f be a real-valued function defined on a subset A of R.

Definition 3.1 A function f is said to be continuous at an element a in A if for any ε > 0,
there is δ > 0 such that |f(x)− f(a)| < ε whenever x ∈ A and |x− a| < δ.
We say that f is continuous on A if f is continuous at every point in A.

Remark 3.2 If c is an isolated point of A, i.e., there is r > 0 such that (c− r, c+ r)∩A = {c},
then f must be continuous at c. Therefore, if c is a limit point of A and c ∈ A, then f is
continuous at c if and only if limx→c f(x) = f(c).

Proposition 3.3 Assume that f is continuous on A. If A is compact, then the image f(A) :=
{f(x) : x ∈ A} is bounded. Moreover, there are points z1 and z2 in A such that f(z1) =
max f(A) and f(z2) = min f(A).

Proof: We first claim that the image f(A) is bounded by using the following two different
methods.
Method I:
Suppose not. Then for each positive integer n, there exists an element xn in A such that
|f(xn)| > n. Since A is compact, there is a convergent subsequence (xnk

) of (xn) such that
z := limk xnk

∈ A. Then by the continuity of f , we have limk f(xnk
) = f(z) and thus,

(f(xnk
)) is a bounded sequence. However, since |f(xnk

)| > nk for all k = 1, 2, .... It leads to a
contradiction.
Method II:
Since f is continuous at every point of A, for each element a in A, there is δ(a) > 0 such
that |f(x) − f(a)| < 1 for all x ∈ A with |x − a| < δ(a). Now for each a ∈ A, set J(a) :=
(a − δ(a), a + δ(a)). Then we have |f(x)| < 1 + |f(a)| for all x ∈ J(a) ∩ A and the collection
{J(a) : a ∈ A} forms an open intervals cover of A, i.e., A ⊆ ⋃

a∈A J(a). Applying the Heine-
Borel property of A (see Theorem 1.13), there are finitely many subcovers, J(a1), ..., J(aN ) of
A, that is, A ⊆ J(a1) ∪ · · · ∪ J(aN ). Take M := max(1 + |f(a1)|, ...., 1 + |f(aN )|). So, for each
element x in A, we have x ∈ J(ak) for some J(aK). This gives |f(x)| < 1 + |f(xK)| ≤ M .
Hence, the image f(A) is bounded by M .
Next, we show that there is an element z ∈ A such that f(z) = max f(A). In fact by the
claim above, L := sup f(A) exists. Notice that for each positive integer n, there is an element
xn ∈ A such that L− 1/n < f(xn) < L+1/n. This implies that limn f(xn) = L. On the other
hand, by the compactness of A, there exists a convergent subsequence (xnk

) of (xn) such that
z := limk xnk

∈ A. So, we have f(z) = limk f(xnk
) = L as required because f is continuous at

z.
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Finally, by considering the function −f , one can also find an element z2 in A such that f(z2) =
min f(A). The proof is finished. ✷

Proposition 3.4 If f is a continuous function defined on a compact set A, then the image
f(A) is also a compact set.

Proof: The result will be shown by the following two methods.
Method I:
By using Theorem 1.13, we need to show that f(A) is a closed and bounded set. Proposition
3.3 tells us that the image f(A) is bounded. It remains to show that f(A) is a closed subset of
R, i.e, if L = lim f(xn) for a sequence (xn) in A, we need to show that L ∈ f(A). In fact, the
compactness of A gives a convergent subsequence (xnk

) of (xn) such that z := limk xnk
∈ A.

Then by the continuity of A, we have L = limk f(xnk
) = f(z) ∈ f(A) as desired.

Method II: In her, we will make use the Heine-Borel property of A. Let {Ji}i∈I be a collection
of open intervals of f(A). Then for each element a ∈ A, we have f(a) ∈ Ji(a) for some i(a) ∈ I.
Since Ji(a) is an open interval, we can find εa > 0 such that (f(a)− εa, f(a) + εa) ⊆ Ji(a). On
the other hand, there is δa > 0 such that |f(x) − f(a)| < εa for all x ∈ A with |x − a| < δ
because f is continuous at a. So, if we put Wa := (a− δa, a+ δa), then we have

f(Wa ∩A) ⊆ (f(a)− εa, f(a) + εa) ⊆ Ji(a).

On the other hand, we have A ⊆ ⋃

a∈A Wa. The Heine-Borel property of A implies that there
are finitely many Wa1 , ...,WaN such that

A ⊆ Wa1 ∪ · · · ∪WaN .

Therefore, we have
f(A) ⊆ Ji(a1) ∪ · · · ∪ Ji(aN ).

The proof is finished. ✷

Example 3.5 By using Proposition 3.4, it is impossible to find a continuous surjection from
[0, 1] onto R.

Definition 3.6 Let A and B be non-empty subsets of R. A bijection f from A onto B is
called a homeomorphism if f and its inverse function f−1 both are continuous.
In this case, A and B are said to be homeomorphic if there exists a homeomorphism between
A and B.

Remark 3.7 In general, if f is a continuous bijection from A onto B, it does not imply that
its inverse f−1 : B → A is continuous. For example, define a function f : [0, 1) ∪ [2, 3] → [0, 2]
by f(x) := x for x ∈ [0, 1); and f(x) := x − 1 for x ∈ [2, 3]. Then f is a continuous bijection
from [0, 1) ∪ [2, 3] onto [0, 2] but the inverse f−1(y) is discontinuous at y = 1.
In fact, the following result tells us that it is impossible to find a homeomorphism between the
sets [0, 1) ∪ [2, 3] and [0, 2].

Corollary 3.8 If a set A is homeomorphic to a set B, then A is compact if and only if B is
compact too.

Proof: It follows from Proposition 3.4 at once. ✷
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4 Uniform continuous functions on compact sets

Throughout this section, A always denotes a non-empty subset of R and f is a function on A.

Definition 4.1 f is said to be uniformly continuous on A if for each ε > 0 there exists δ > 0
(depends on ε only) such that |f(x)− f(y)| < ε whenever x, y in A with |x− y| < δ.

Remark 4.2 (i) By the definition of uniform continuity, a function f is not uniformly con-
tinuous on A if there is ε > 0 such that for each δ > 0, we can find some x and x′ in A
satisfying |x− x′| < δ but |f(x)− f(x′)| ≥ ε.

(ii) It is clear that every uniformly continuous function on A is continuous. However, the
converse does not hold.

Example 4.3 Let A := [1,∞).

(i) If f1(x) := x for all x ∈ A, then f1 is clearly uniformly continuous on A.

(ii) If f2(x) := x2 for all x ∈ A, then f2 is not uniformly continuous on A. In fact, if we let
xn := n and yn = n+ 1

n
for each positive integer, then |x2n − y2n| = 1 + 1

n2 . So, let ε = 1.
Then for any δ > 0, we can choose a positive integer N so that 1/N < δ and thus we
have |xN − yN | < δ but |f2(xN )− f2(yN )| ≥ ε.

(iii) If f3(x) :=
√
x, then f3 is uniformly continuous on A. In fact, it is follows from the simple

calculation that

|f3(x)− f3(y)| =
|x− y|√
x+

√
y
≤ 1

2
|x− y|

for all x, y ∈ A.

Remark 4.4 From Examples 4.3 (i) and (ii), we see that product of uniformly continuous
functions need not be uniformly continuous.
On the other hand, notice that the function f2 in Example 4.3 is a homeomorphism from A
onto itself, i.e, f2 is a bijection, also, f2 and its inverse f−1

2 both are continuous. Indeed, the
inverse of f2 is given by f3. From Example 4.3 (ii) and (iii), we see that the uniform continuity
cannot be preserved for a homeomorphism.

Theorem 4.5 If f is a continuous function defined on a compact set A, then f is uniformly
continuous on A.

Proof: Recall that a set A is said to be compact if for every sequence (xn) in A, we can find
subsequence (xnk

) that converges to some element in A. This is also equivalent to saying that
A has the Heine-Borel property (see Theorem 1.13).
Method I:
Suppose tha4 f is not uniformly continuous on A. Then there is ε > 0 so that for every δ > 0, we
can find some elements x and y in A with |x−y| < δ but |f(x)−f(y)| ≥ ε. From this, there exist
the sequences (xn) and (yn) in A such that |xn − yn| < 1/n but |f(xn)− f(yn)| ≥ ε. By using
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the compactness of A, (xn) has a subsequence (xnk
) that converges to some element z ∈ A and

hence, limk ynk
= z because limk(xnk

− ynk
) = 0. This gives limk f(xnk

) = limk f(ynk
) = f(z)

which leads to a contradiction since |f(xnk
)− f(ynk

)| ≥ ε for all k.
Method II: Let ε > 0. Since f is continuous on A, for each element a ∈ A, there is δ(a) > 0
such that |f(x)− f(y)| < ε/2 whenever x ∈ A with |x− a| < δ(a). Put

J(a) := (a− 1

2
δ(a), a +

1

2
δ(a)).

Then the collection {J(a) : a ∈ A} form an open intervals cover of A. Using the Heine-Borel
property, there exists finitely many elements a1, ...., aN in A such that A ⊆ J(a1)∪ · · ·∪J(aN ).
Now we can choose a positive number δ such that 0 < δ < 1

2δ(ak) for all k = 1, ..., N . We
will show that the positive number δ that we want. In fact, let x, y ∈ A with |x − y| < δ.
Since A ⊆ J(a1) ∪ · · · ∪ J(aN ), we have x ∈ J(ak) for some k = 1, .., N . Thus, we have
|x−ak| < δ < 1

2δ(ak). Also, from this, we see that |y−ak| ≤ |y−x|+|x−ak| < δ+1
2δ(ak) < δ(ak).

Then by the definition of δ(ak), we have |f(x) − f(y)| ≤ |f(x) − f(ak)| + |f(ak) − f(y)| < ε.
The proof is finished. ✷

Proposition 4.6 Let f be a continuous function defined on (a, b). The the followings are
equivalent.

(i) There exists a continuous function F : [a, b] → R such that F (x) = f(x) for all x ∈ (a, b).

(ii) f is uniformly continuous on (a, b).

(iii) The limits lim
x→a+

f(x) and lim
x→b−

f(x) both exist.

In this case, this continuous extension F is uniquely determined by f . In fact, F (a) =
lim

x→a+
f(x) and F (b) = lim

x→b−
f(x).

Proof: For (i) ⇒ (ii), we assume that (i) holds. Then by Theorem 4.5, F is uniformly
continuous on [a, b]. This implies that f = F |(a,b) is uniformly continuous on (a, b) at once.
For (ii) ⇒ (iii), we are going to show that lim

x→b−
f(x) exists.

It suffices to show that the sequence (f(xn)) converges to the same limit whenever any sequence
(xn) in (a, b) that converges to b.
We first claim that (f(xn)) is a Cauchy sequence for any such sequence (xn) in (a, b). Let ε > 0.
Then by the assumption (ii), there is δ > 0 such that |f(x) − f(y)| < ε as x, y ∈ (a, b) with
|x− y| < δ. Now since limxn = b and thus, (xn) is a Cauchy sequence, we can find a positive
N such that |xm − xn| < δ when m,n ≥ N . This gives |f(xm)− f(xn)| < ε as m,n ≥ N . The
claim follows and thus, the limit lim

n→∞
f(xn) exists.

Next we want to show that if (xn) and (yn) both are the sequences in (a, b) that converge to
b, then lim

n→∞
f(xn) = lim

n→∞
f(yn). Let L = lim

n→∞
f(xn) and L′ = lim

n→∞
f(yn). Let ε > 0 and

let δ be given by the uniform continuity of f . Since lim xn = lim yn, we can choose a positive
integer N large enough so that |xN − yN | < δ. Also, such N satisfies |f(xN ) − L| < ε and
|f(yN )− L′| < ε because L = lim

n→∞
f(xn) and L′ = lim

n→∞
f(yn). This implies that

|L− L′| ≤ |L− f(xN )|+ |f(xN )− f(yN)|+ |f(yN )− L′| < 3ε
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for all ε > 0. So, L = L′ and hence, the limit lim
x→b−

f(x) exist.

The proof of the case lim
x→a+

f(x) is similar.

Finally, we show (iii) ⇒ (i). Define F (a) := lim
x→a+

f(x); F (b) := lim
x→b−

f(x) and F (x) := f(x) for

x ∈ (a, b). Notice that F is continuous on [, ab]. In fact, we have F (a) = lim
x→a+

f(x) = lim
x→a+

F (x)

and F (b) = lim
x→b−

f(x) = lim
x→b−

F (x). Thus, F is continuous at x = a and b. So, the function F

is desired.
The last assertion is clearly follows from the continuity of F immediately. The proof is finished.
✷

Remark 4.7 Indeed, in the proof of Proposition 4.6 (i) ⇒ (ii) above, we have shown the
following fact. Suppose that f is uniformly continuous function defined on A. If (xn) is a
Cauchy sequence in A, then so is the sequence (f(xn)). We can use this simple observation to
see a function ”NOT” being uniformly continuous on its domain.
Notice the assumption of the uniform continuity of f is essential in here by considering the
simple example that f(x) = 1

x
, x ∈ A := (0, 1] and xn = 1

n
, n = 1, 2....

Definition 4.8 Let I be an interval (may be unbounded). A function s defined on I is called
a step function if there exist finitely many pairwise disjoint subintervals of I, say J1, ...., JN
such that I =

⋃N
k=1 Jk and s is a constant on each Jk.

Proposition 4.9 Let f : (a, b) → R be a continuous function. Then the followings are equiv-
alent.

(i) f is uniformly continuous on (a, b).

(ii) For each ε > 0 there exists a step function s on (a, b) such that |f(x)− s(x)| < ε for all
x ∈ (a, b), that is, the function f can be ”uniformly approximated” by step functions on
(a, b).

Proof: Suppose that (i) holds. Then by Proposition 4.6, there exists a continuous extension
F of f on [a, b]. Let ε > 0. Then there is δ > 0 so that |F (x)−F (y)| < ε whenever x, y ∈ (a, b)
with |x − y| < δ. Now if we choose a partition a = x0 < · · · < xn = b on (a, b) such that
|xk − xk−1| < δ for k = 1, ..., n. Now if we let s(x) := F (xk−1) when x ∈ [xk−1, xk) ∩ (a, b),
then s is the step function as desired.
Now assume that (ii) holds. Let ε > 0. Then by the assumption, there is a step function s on
(a, b) such that |s(x)− f(x)| < ε for all x ∈ (a, b). From the definition of a step function, there
exist some c, d ∈ (a, b) with a < c < d < b so that s(x) ≡ p on (a, c) and s(x) ≡ q on (d, b)
for some constants p and q. Hence, |f(x) − p| < ε for any x ∈ (a, c). Similarly, we also have
|f(x)− q| < ε for all x ∈ (d, b).
It is because the restriction of f on [c, d] is uniformly continuous, there is δ1 > 0 such that
|f(x) − f(x′)| < ε for all x, x′ ∈ [c, d] with |x − x′| < δ1. On the other hand, since f is
continuous at x = c and d, we can find δ2 > 0 such that |f(x) − f(c)| < ε as |x − c| < δ2 and
|f(x)− f(d)| < ε as |x− d| < δ2. Now if we take 0 < δ < min(δ1, δ2), then |f(x)− f(x′)| < 2ε
as x, x′ ∈ (a, b) with |x−x′| < δ. So, f is uniformly continuous on (a, b). The proof is finished.
✷
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In fact, in the proof of Proposition 4.9 (i) ⇒ (ii), we have shown the following fact:

Corollary 4.10 If f is a continuous function defined on a closed and bounded interval [a, b],
then it can be uniformly approximated by step functions, that is, for each ε > 0, there exists a
step function s defined on [a, b] such that |f(x)− s(x)| < ε for all x ∈ [a, b].
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