MATH2050a Mathematical Analysis I

Exercise 2 suggested Solution

5. Use the definition of the limit of a sequence to establish the following limits.

(a) $\lim \frac{n}{n^2+1} = 0$ (b) $\lim \frac{2n}{n+1} = 2$

Solution:

(a) A sequence $\{x_n\}$ is said to converge to x, or that x is the limit of $\{x_n\}$, if for every $\epsilon > 0$, there exists a natural number n_{ϵ} , such that for all $n \ge n_{\epsilon}$, we have $|x_n - x| < \epsilon$.

since $|(\frac{n}{n^2+1}) - 0| < \frac{n}{n^2} = \frac{1}{n}$, following from Archimedean property, there exists $n_{\epsilon} > \frac{1}{\epsilon}$, so $\forall n > n_{\epsilon}$

$$\left|\left(\frac{n}{n^2+1}\right) - 0\right| < \frac{n}{n^2} = \frac{1}{n} < \epsilon$$

we have $\lim \frac{n}{n^2+1} = 0$

(b) since $|\frac{2n}{n+1} - 2| = |\frac{2n-2n-1}{n+1}| = \frac{1}{n+1}$, for each $\epsilon > 0$, similar with 5(a), there exists $(n_{\epsilon} + 1) > \frac{1}{\epsilon}$, so $\forall n > n_{\epsilon}$

$$\frac{2n}{n+1} - 2| = \left|\frac{2n - 2n - 1}{n+1}\right| = \frac{1}{n+1} < \frac{1}{n_{\epsilon} + 1} < \epsilon$$

Hence, we have $\lim \frac{2n}{n+1} = 2$.

14. Let $b \in R$ satisfy 0 < b < 1. Show that $\lim(nb^n)=0$.[Hint:Use the Binomial Theorem as the example 3.1.11(d)]

Solution:

Let $b \in R$ and 0 < b < 1, we want to show $\lim(nb^n)=0$. Since 0 < b < 1, we obtain $\frac{1}{b} > 1$. Let $\frac{1}{b} = 1 + t$, where t > 0. Then we have

$$(nb^n) = \frac{n}{(1/b)^n} = \frac{n}{(1+t)^n}$$

By the Binomial Theorem , since $n \ge 1$, we have

$$\begin{split} 1+nt+\tfrac{1}{2}n(n-1)t^2+\ldots &\geq 1+\tfrac{1}{2}n(n-1)t^2 \geq \tfrac{1}{2}n(n-1)t^2\\ \text{It follows that } \frac{n}{(1+t)^n} \leq \tfrac{2}{(n-1)t^2}, \, \forall \epsilon > 0, \, \text{there exists } n_\epsilon \in N, \, \text{such that } n_\epsilon > \tfrac{2}{t^2\epsilon}, \\ \text{hence, } \forall n-1 > n_\epsilon, \end{split}$$

$$|nb^n - 0| = \frac{n}{(1+t)^n} \le \frac{2}{(n-1)t^2} \le \frac{2}{(n_{\epsilon})t^2} \le \epsilon$$

Hence, $\lim(nb^n)=0$.

23. Show that if $\{x_n\}$ and $\{y_n\}$ are convergent sequences, then the sequence $\{u_n\}$ and $\{v_n\}$ defined by $u_n := max\{x_n, y_n\}$ and $v_n := min\{x_n, y_n\}$ are also convergent. (See Exercise 2.2.18.)

Solution:

according to Exercise 2.2.18, $u_n = \frac{1}{2}(x_n + y_n + |x_n - y_n|)$, and $v_n = \frac{1}{2}(x_n + y_n - |x_n - y_n|)$. Since $\{x_n\}$ and $\{y_n\}$ are convergent sequences, assuming that $\lim x_n = a$, $\lim y_n = b$. Therefore, $\forall \epsilon > 0$, there exist N_1 and N_2 , such that $\forall n \ge N_1, k \ge N_2$, we have

 $|x_n - a| < \epsilon \quad |y_k - b| < \epsilon$

Let $N_3 \ge N_1 + N_2$, and so $\forall n \ge N_3, |x_n - a| < \epsilon$, $|y_n - b| < \epsilon$

So $\forall n \ge N_3$, $|x_n + y_n - (a+b)| < 2\epsilon$, and $||x_n - y_n| - |a-b|| < 2\epsilon$, which means that $|u_n - \frac{1}{2}(a+b+|a-b|)| < |x_n + y_n - (a+b)| + ||x_n - y_n| - |a-b|| < 4\epsilon$.

Hence, $\{u_n\}$ is a convergent sequence, and the limit point is $limx_n + limy_n - limx_n - limy_n|$. Similarly, we can prove that $\{v_n\}$ converges.