MATH2050a Mathematical Analysis I

Exercise 2 suggested Solution

5. Use the definition of the limit of a sequence to establish the following limits.

(a) $\lim \frac{n}{n^2+1} = 0$ $\frac{n}{n^2+1}=0$ (b)lim $\frac{2n}{n+1}=2$

Solution:

(a) A sequence $\{x_n\}$ is said to converge to x, or that x is the limit of $\{x_n\}$, if for every $\epsilon > 0$, there exists a natural number n_{ϵ} , such that for all $n \geq n_{\epsilon}$, we have $|x_n - x| < \epsilon$.

since $|(\frac{n}{n^2+1}) - 0| < \frac{n}{n^2} = \frac{1}{n}$, following from Archimedean property, there exists $n_{\epsilon} > \frac{1}{\epsilon}$, so $\forall n > n_{\epsilon}$

$$
\bigl| \bigl(\tfrac{n}{n^2+1} \bigr) - 0 \bigr| < \tfrac{n}{n^2} = \tfrac{1}{n} < \epsilon
$$

we have $\lim_{n \to \infty} \frac{n}{n^2+1} = 0$

(b) since $\left|\frac{2n}{n+1} - 2\right| = \left|\frac{2n-2n-1}{n+1}\right| = \frac{1}{n+1}$, for each $\epsilon > 0$, similar with $5(a)$, there exists $(n_{\epsilon} + 1) > \frac{1}{\epsilon}$, so $\forall n > n_{\epsilon}$

$$
\frac{2n}{n+1} - 2| = \left| \frac{2n - 2n - 1}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n+1} < \epsilon
$$

Hence, we have $\lim_{n+1} \frac{2n}{n+1} = 2$.

14. Let $b \in R$ satisfy $0 < b < 1$. Show that $\lim(n b^n) = 0$. [Hint: Use the Binomial Theorem as the example 3.1.11(d)]

Solution:

Let $b \in R$ and $0 < b < 1$, we want to show $\lim(n b^n) = 0$. Since $0 < b < 1$, we obtain $\frac{1}{b} > 1$. Let $\frac{1}{b} = 1 + t$, where $t > 0$. Then we have

$$
(nb^n) = \frac{n}{(1/b)^n} = \frac{n}{(1+t)^n}
$$

By the Binomial Theorem , since $n \geq 1$, we have

 $1 + nt + \frac{1}{2}n(n-1)t^2 + ... \ge 1 + \frac{1}{2}n(n-1)t^2 \ge \frac{1}{2}n(n-1)t^2$ It follows that $\frac{n}{(1+t)^n} \leq \frac{2}{(n-1)t^2}$, $\forall \epsilon > 0$, there exists $n_{\epsilon} \in N$, such that $n_{\epsilon} > \frac{2}{t^2 \epsilon}$, hence, $\forall n-1 > n_{\epsilon}$,

$$
|nb^n - 0| = \frac{n}{(1+t)^n} \le \frac{2}{(n-1)t^2} \le \frac{2}{(n_{\epsilon})t^2} \le \epsilon
$$

Hence, $\lim(n b^n) = 0$.

23. Show that if $\{x_n\}$ and $\{y_n\}$ are convergent sequences, then the sequence ${u_n}$ and ${v_n}$ defined by $u_n := max{x_n, y_n}$ and $v_n := min{x_n, y_n}$ are also convergent. (See Exercise 2.2.18.)

Solution:

according to Exercise 2.2.18, $u_n = \frac{1}{2}(x_n + y_n + |x_n - y_n|)$, and $v_n = \frac{1}{2}(x_n + y_n)$ $y_n - |x_n - y_n|$. Since $\{x_n\}$ and $\{y_n\}$ are convergent sequences, assuming that $\lim x_n = a$, $\lim y_n = b$. Therefore, $\forall \epsilon > 0$, there exist N_1 and N_2 , such that $\forall n \geq N_1, k \geq N_2$, we have

 $|x_n - a| < \epsilon$ $|y_k - b| < \epsilon$

Let $N_3 \ge N_1 + N_2$, and so $\forall n \ge N_3, |x_n - a| < \epsilon$, $|y_n - b| < \epsilon$ So $\forall n \ge N_3$, $|x_n + y_n - (a+b)| < 2\epsilon$, and $||x_n - y_n| - |a-b|| < 2\epsilon$, which means

that $|u_n - \frac{1}{2}(a+b+|a-b|)| < |x_n + y_n - (a+b)| + ||x_n - y_n| - |a-b|| < 4\epsilon$.

Hence, $\{u_n\}$ is a convergent sequence, and the limit point is $\lim x_n+\lim y_n-\lim y_n$ $|lim x_n - lim y_n|$. Similarly, we can prove that $\{v_n\}$ converges.