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Sequence of Functions

Definition (c.f. Definition 8.1.1). Let (fn) be a sequence of real-valued functions defined
on A ⊆ R. The sequence (fn) is said to converge (pointwisely) to a function f on A if
for each x ∈ A, (fn(x)) converges to f(x). In this case, we denote

f(x) = lim
n→∞

fn(x) or f = lim
n→∞

fn.

Definition (c.f. Definition 8.1.4). Let (fn) be a sequence of real-valued functions defined
on A ⊆ R. The sequence (fn) is said to converge uniformly to a function f on A if for
each ε > 0, there exists N ∈ N such that whenever n ≥ N and x ∈ A,

|fn(x)− f(x)| < ε.

Remark. Notice that in ε-N notation, N depends on ε and x for pointwise convergence. For
uniform convergence, N depends on ε ONLY. Also, uniform convergence implies pointwise
convergence. (Prove it as an exercise!)

Example 1 (c.f. Section 8.1, Ex.8 & Ex.18). Let fn : [0,∞)→ R be defined by

fn(x) = xe−nx.

Show that (fn) converges uniformly on [0,∞).

Solution. We first find the pointwise limit of fn. If x = 0, then fn(x) = 0 for all n. Hence

lim
n→∞

fn(0) = 0.

If x > 0, note that e−nx → 0 as n→∞. Hence

lim
n→∞

fn(x) = x · lim
n→∞

e−nx = 0.

Now we show that (fn) converges uniformly to 0. Firstly, we need to find the maximum of
fn(x) = xe−nx on [0,∞) for each n. Differentiate fn gives

f ′n(x) = (1− nx)e−nx.

Hence it has only one critical point at x = 1/n. Now at the endpoints and critical point,

fn(0) = 0, fn(1/n) =
1

ne
and lim

x→∞
fn(x) = 0.

It follows that the maximum value of fn is 1/ne. Hence

|xe−nx − 0| ≤ 1

ne
, ∀n, ∀x ≥ 0.

Let ε > 0 and take N ∈ N such that 1/N < eε. Then whenever n ≥ N and x ≥ 0,

|xe−nx − 0| ≤ 1

ne
≤ 1

Ne
< ε.
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Example 2 (c.f. Section 8.1, Ex.4 & Ex.14). Let fn : [0,∞)→ R be defined by

fn(x) =
xn

1 + xn
.

Let 0 < b < 1. Show that (fn) converges uniformly on [0, b] but not uniformly on [0, 1].

Solution. The pointwise limit of (fn) is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

xn

1 + xn
=


0 if 0 ≤ x < 1,

1/2 if x = 1,

1 if x > 1.

Let’s show that (fn) converges uniformly to 0 on [0, b]. Note that∣∣∣∣ xn

1 + xn
− 0

∣∣∣∣ ≤ xn

1 + 0
= xn ≤ bn, ∀n, ∀x ∈ [0, b].

Let ε > 0. Since 0 < b < 1, bn → 0 as n → ∞. Then there exists N ∈ N such that bn < ε
whenever n ≥ N . It follows that∣∣∣∣ xn

1 + xn
− 0

∣∣∣∣ ≤ bn < ε, ∀n ≥ N, ∀x ∈ [0, b].

To see that (fn) does not converge uniformly on [0, 1], we need to show that there exist ε > 0
such that whenever N ∈ N, there exists n ≥ N and x ∈ [0, 1] such that∣∣∣∣ xn

1 + xn
− 0

∣∣∣∣ ≥ ε.

For each N ∈ N, we can choose n = N and x = 2−1/n. Then∣∣∣∣ xn

1 + xn
− 0

∣∣∣∣ =
1/2

1 + 1/2
=

1

3
.

This shows that the convergence is not uniform on [0, 1].

Remark. Is (fn) converges uniformly on [0, 1)? (Investigate the above argument!)

Essentially, the above argument did the same thing in the lemma below.

Lemma (c.f. Lemma 8.1.5). A sequence of functions (fn) defined on A ⊆ R does not
converges to a function f uniformly on A if and only if there exists ε > 0, a subsequence
(fnk

) of (fn) and a sequence (xk) in A such that

|fnk
(xk)− f(xk)| ≥ ε.
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Interchange of Limits

Uniform convergence is important when we want to interchange the order of limits. The fol-
lowing propositions tell us that continuity and integrablility are preserved under uniform
convergence.

Theorem (c.f. Theorem 8.2.2). Let (fn) be a sequence of functions defined on A ⊆ R and
converges uniformly to a function f on A. Suppose that each fn is continuous on A. Then
f is continuous on A.

Remark. This theorem tells us that for each x0 ∈ A,

lim
x→x0

lim
n→∞

fn(x) = lim
x→x0

f(x) = f(x0) = lim
n→∞

fn(x0) = lim
n→∞

lim
x→x0

fn(x).

Theorem (c.f. Theorem 8.2.4). Let (fn) be a sequence of functions in R[a, b] and converges
uniformly to a function f on [a, b]. Then f ∈ R[a, b] and

lim
n→∞

∫ b

a

fn =

∫ b

a

(
lim
n→∞

fn

)
.

Remark. Does the same result hold for improper integral?

The preservation of derivatives is a bit different. Conditions on the derivatives of the
sequences of functions are emphasised.

Proposition (c.f. Proposition 5.1 & 5.2 of Lecture Notes). Let (fn) be a sequence of dif-
ferentiable functions defined on (a, b). Suppose that there exists a point c ∈ (a, b) such that
lim
n→∞

fn(c) exists and (f ′n) converges uniformly to a function g on (a, b). Then

• (fn) converges uniformly to a differentiable function f on (a, b); and

• f ′ = g on (a, b).

Remark. This is a stronger version of the theorem proved in the lecture. The proof is more
complicated because we cannot apply the Fundamental Theorem. Nevertheless, these
theorems both implies that for each x0 ∈ (a, b),

lim
x→x0

lim
n→∞

fn(x)− fn(x0)

x− x0
= lim

n→∞
lim
x→x0

fn(x)− fn(x0)

x− x0
.

Reading Exercise (c.f. Proposition 6.2 of Lecture Notes). Read the proofs of Dini’s
Theorem to learn the “compactness arguments”.
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Exercises

Exercise 1 (c.f. Section 8.1, Ex.24). Let (fn) be a sequence of functions that converges
uniformly to f on A and that satisfies |fn(x)| ≤ M for all n ∈ N and all x ∈ A. If g is
continuous on the interval [−M,M ], show that the sequence (g ◦ fn) converges uniformly to
g ◦ f on A.

Solution. We need to show that for all ε > 0, there exists N ∈ N such that

|g(fn(x))− g(f(x))| < ε, ∀n ≥ N, ∀x ∈ A.

Let ε > 0. Since g is continuous on [−M,M ], g is uniformly continuous on [−M,M ]. i.e.,
there exist δ > 0 such that whenever |u− v| < δ and u, v ∈ [−M,M ],

|g(u)− g(v)| < ε.

Now since (fn) converges uniformly to f , there exists N ∈ N such that

|fn(x)− f(x)| < δ, ∀n ≥ N, ∀x ∈ A.

Also, take limit as n → ∞ in the inequality |fn(x)| ≤ M , we have |f(x)| ≤ M for all
x ∈ A. Hence whenever n ≥ N and x ∈ A, we have shown that |fn(x) − f(x)| < δ and
fn(x), f(x) ∈ [−M,M ]. Thus by the continuity of g,

|g(fn(x))− g(f(x))| < ε.

Exercise 2 (c.f. Section 8.2, Ex.7). Suppose the sequence (fn) converges uniformly to f on
the set A, and suppose that each fn is bounded on A. (i.e., for each n, there is a constant
Mn such that |fn(x)| ≤Mn for all x ∈ A.) Show that that function f is bounded on A.

Solution. We need to find a constant M > 0 such that |f(x)| ≤ M for all x ∈ A. Take
ε = 1. Since (fn) converges to f uniformly, there exists N ∈ N such that

|fN(x)− f(x)| < 1, ∀x ∈ A.

Therefore by triangle inequality,

|f(x)| ≤ |f(x)− fN(x)|+ |fN(x)| ≤ 1 +MN , ∀x ∈ A.

Hence f is bounded by M = 1 +MN .

Remark. In addition, we can show that the sequence of functions (fn) is uniformly
bounded. i.e., there exists M > 0 such that

|fn(x)| ≤M, ∀n ∈ N, ∀x ∈ A.
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Exercise 3 (c.f. Section 8.2, Ex.4). Suppose (fn) is a sequence of continuous functions on
an interval I that converges uniformly on I to a function f . If (xn) ⊆ I converges to x0 ∈ I,
show that

lim
n→∞

fn(xn) = f(x0).

Solution. We need to show that for all ε > 0, there exists N ∈ N such that

|fn(xn)− f(x0)| < ε, ∀n ≥ N.

Notice that for any n ∈ N and x ∈ I,

|fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)|.

Let ε > 0. Since (fn) converges to f uniformly, there exists N1 ∈ N such that

|fn(x)− f(x)| < ε

2
, ∀n ≥ N1, ∀x ∈ I.

On the other hand, note that f is a continuous function because it is the uniform limit of
continuous functions. Hence lim f(xn) = f(x0). i.e., there exists N2 ∈ N such that

|f(xn)− f(x0)| <
ε

2
, ∀n ≥ N2.

Combine the above results, take N = max{N1, N2}. Then whenever n ≥ N ,

|fn(xn)− f(x0)| ≤
ε

2
+
ε

2
= ε.

Remark. In the very beginning, we estimate |fn(xn)− f(x0)| by

|fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)|.

What happens if we change the estimation to

|fn(xn)− f(x0)| ≤ |fn(xn)− fn(x0)|+ |fn(x0)− f(x0)|?
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