
MATH2060B Mathematical Analysis II Tutorial 8

Suggested Solution of Exercises on Riemann Integration

Question 1 (2018-19 Final Q2). Define a function g : [0, π/2]→ R by

g(x) =

{
cos2 x, if x ∈ Q,
0, otherwise.

Find the upper and lower Riemann integrals of g over [0, π/2]. Is it Riemann integrable?

Solution. Let’s find the lower and upper integrals of g.

• Lower integral: Let P be any partition of [0, π/2]. Note that each subinterval
[xi−1, xi] must containing some irrational number, so

mi(g, P ) = 0, ∀i = 1, ..., n.

It follows that the lower sum is given by

L(g, P ) =
n∑
i=1

mi(g, P )∆xi = 0.

Taking infimum over all partition P , the lower integral of g is given by∫ π/2

0

g = 0.

• Upper integral: Let P be any partition of [0, π/2]. Note that cos2 x is decreasing on
each subinterval [xi−1, xi] and rational numbers are dense, so

Mi(g, P ) = cos2(xi−1), ∀i = 1, ..., n.

Consider f : [0, π/2]→ R defined by f(x) = cos2 x. We also have

Mi(f, P ) = cos2(xi−1), ∀i = 1, ..., n.

It follows that

U(g, P ) =
n∑
i=1

Mi(g, P )∆xi =
n∑
i=1

Mi(f, P )∆xi = U(f, P ).

Since f and g have the same upper sum over arbitrary partitions of [0, π/2], they have
the same upper integral, hence∫ π/2

0

g =

∫ π/2

0

f =

∫ π/2

0

f =

∫ π/2

0

cos2 xdx =

∫ π/2

0

1 + cos 2x

2
dx =

π

4
.

In summary, the lower and upper intgral of g is given by∫ π/2

0

g = 0 and

∫ π/2

0

g =
π

4
.

Since they are unequal, g is not Riemann integrable.
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Question 2 (2016-17 Midterm Q4). Define a funtion f on [0, 1] by

f(x) =

{
1, if x = 1/n for some n ∈ N,
0, otherwise.

Show that f is Riemann integrable and find

∫ 1

0

f .

Solution. For each natural number N ≥ 2, define the partition PN of [0, 1] by

PN =

{
0,

1

N
± δ, 1

N − 1
± δ, ..., 1

2
± δ, 1− δ, 1

}
, where 2δ <

1

N(N − 1)
.

(Visualize this partition!) This ensures that

0 <
1

N
− δ < 1

N
+ δ <

1

N − 1
− δ < 1

N − 1
+ δ < · · · < 1

2
− δ < 1

2
+ δ < 1− δ < 1.

Note that each subinterval [xi−1, xi] must contain some numbers that cannot be represented
by the reciprocal of some natural number, so

mi(f, PN) = 0, ∀i = 1, ..., n

On the other hand, note that we have (Why?)

Mi(f, PN) =

{
1, if i = 1 or even

0, otherwise
.

Therefore, the lower sum and upper sum can be calculated by

L(f, PN) =
n∑
i=1

mi(f, PN)∆xi = 0

U(f, PN) =
n∑
i=1

Mi(f, PN)∆xi =

(
1

N
− δ
)

+
N∑
k=2

2δ + δ =
1

N
+ 2(N − 1)δ

It follows that

0 = L(f, PN) ≤
∫ 1

0

f ≤
∫ 1

0

f ≤ U(f, Pn) <
1

N
+

N − 1

N(N − 1)
=

2

N
.

Since n ≥ 2 is arbitrary, letting N →∞ in the above inequality, we have

0 ≤
∫ 1

0

f ≤
∫ 1

0

f ≤ 0.

It forces the lower and upper integral of f equal zero. Thus f is Riemann integrable with∫ 1

0

f = 0.
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Question 3 (2017-18 Final Q2). .

(i) Define a function f : [0,∞)→ [0,∞) by

f(x) =

{
1, if x ∈ [n, n+ 1/2n) for some n ∈ N,
0, otherwise.

Show that the improper integral

∫ ∞
0

f(x)dx exists but lim
x→∞

f(x) does not exist.

(ii) Let f be a non-negative R-valued function defined on [0,∞). Suppose that

∫ ∞
0

f(x)dx

is convergent and lim
x→∞

f(x) = L. Show that L = 0.

Solution. .

(i) The fact that f ∈ R[0, T ] for all T > 0 is left as an exercise. (You need to find a
partition P of [0, T ] for each ε > 0 such that U(f, P )− L(f, P ) < ε. It is tedious but
the technique used is the same. You usually don’t need to provide the proof for such
questions if you have more to do.)

Notice that for each n ∈ N,∫ n

0

f(x)dx =
n−1∑
k=0

∫ k+1

k

f(x)dx =
n−1∑
k=1

1

2k
= 1− 1

2n−1
.

Fix T > 0 and let N to be a natural number such that N ≤ T < N + 1. Since f is
non-negative, we have

1− 1

2N−1
=

∫ N

0

f(x)dx ≤
∫ T

0

f(x)dx ≤
∫ N+1

0

f(x)dx = 1− 1

2N
.

Since N →∞ as T →∞, by Squeeze Theorem,

∫ ∞
0

f(x)dx = lim
T→∞

∫ T

0

f(x)dx = 1.

Now consider the sequences (xn) and (yn) defined by

xn = n and yn = n+
1

2n
, ∀n ∈ N.

Note the both (xn) and (yn) diverges properly to ∞, but f(xn) = 1 for all n and
f(yn) = 0 for all n. Hence lim

x→∞
f(x) does not exist.

(ii) Since f is non-negative, we must have L ≥ 0. Suppose on a contrary that L > 0. Then
there exist T > 0 such that f(x) ≥ L/2 for all x > T . Then for each M > 0, take
A > max{T,M}, we have∣∣∣∣∫ A+1

A

f(x)dx

∣∣∣∣ =

∫ A+1

A

f(x)dx ≥ L

2
> 0.

It follows by Cauchy Criterion that

∫ ∞
0

f(x)dx is divergent. It is a contradiction.
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Question 4 (2016-17 Final Q2). Let f be a function defined by

f(x) =
sinx

x
, for x ≥ 1.

(i) Show that the integral

∫ ∞
1

f(x)dx is convergent.

(ii) Show that the integral

∫ ∞
1

|f(x)|dx is divergent.

Solution. .

(i) Fix T > 1. Note that by Integration by Parts,∫ T

1

f(x)dx =

∫ T

1

sinx

x
dx =

[
−cosx

x

]T
1
−
∫ T

1

cosx

x2
dx.

Hence it suffices to show that the improper integral

∫ ∞
1

cosx

x2
dx converges.

Note that for any A2 > A1 > 1, we have∣∣∣∣∫ A2

A1

cosx

x2
dx

∣∣∣∣ ≤ ∫ A2

A1

| cosx|
x2

dx ≤
∫ A2

A1

1

x2
dx =

1

A1

− 1

A2

≤ 1

A1

.

Hence for any ε > 0, we can choose M > 1 such that 1/M < ε. Then whenever
A2 > A1 > M , ∣∣∣∣∫ A2

A1

cosx

x2
dx

∣∣∣∣ ≤ 1

A1

<
1

M
< ε.

It follows by Cauchy Criterion that

∫ ∞
1

cosx

x2
dx converges.

(ii) Note that since |f(x)| is non-negative, we have∫ ∞
1

|f(x)|dx ≥
∫ (N+1)π

π

| sinx|
x

dx =
N∑
k=1

∫ (k+1)π

kπ

| sinx|
x

dx.

For each k ∈ N, we can substitute x = t+ kπ, then∫ (k+1)π

kπ

| sinx|
x

dx =

∫ π

0

| sin(t+ kπ)|
t+ kπ

dt =

∫ π

0

sin t

t+ kπ
dt ≥ 1

(k + 1)π

∫ π

0

sin tdt.

Write A =

∫ π

0

sin tdt, we have

∫ ∞
1

|f(x)|dx ≥
N∑
k=1

A

(k + 1)π
=
A

π

N∑
k=1

1

k + 1
.

Since the above inequality holds for all N ∈ N and the harmonic series diverges to ∞,

it follows that

∫ ∞
1

|f(x)dx is also divergent.

Remark. Integration by parts is a consequence of the Product Rule and the Funda-
mental Theorem of Calculus. You may try to prove it as an exercise.
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Question 5 (2018-19 Final Q3). Let f be a continuous function on [a, b] and ϕ : [α, β]→ R
be continuously differentiable such that ϕ(α) = a and ϕ(β) = b. Show that∫ b

a

f(x)dx =

∫ β

α

f(ϕ(t))ϕ′(t)dt

(Hint: Consider the functions F (u) =
∫ u
a
f(x)dx and H(t) = F (ϕ(t)).)

Solution. Define the functions F : [a, b]→ R and H : [α, β]→ R by

F (u) =

∫ u

a

f(x)dx and H(t) = F (ϕ(t)).

Since f is continuous, we have F ′ = f by the Fundamental Theorem of Calculus. Also,
by Chain Rule, we have H ′(t) = F ′(ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t). It follows again by the
Fundamental Theorem of Calculus that∫ b

a

f(x)dx = F (b)− F (a) = H(β)−H(α) =

∫ β

α

H ′(t)dt =

∫ β

α

f(ϕ(t))ϕ′(t)dt

Remark. Note that this substitution theorem is a liitle bit different from the lecture notes.
The assumption on ϕ is relaxed, but f is required to be continuous.
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