Suggested Solution of Exercises on Riemann Integration

Question 1 (2018-19 Final Q2). Define a function $g : [0, \pi/2] \to \mathbb{R}$ by

$$
g(x) = \begin{cases} \cos^2 x, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{otherwise.} \end{cases}
$$

Find the upper and lower Riemann integrals of g over $[0, \pi/2]$. Is it Riemann integrable?

Solution. Let's find the lower and upper integrals of q .

• Lower integral: Let P be any partition of $[0, \pi/2]$. Note that each subinterval $[x_{i-1}, x_i]$ must containing some irrational number, so

$$
m_i(g, P) = 0, \quad \forall i = 1, ..., n.
$$

It follows that the lower sum is given by

$$
L(g, P) = \sum_{i=1}^{n} m_i(g, P) \Delta x_i = 0.
$$

Taking infimum over all partition P , the lower integral of q is given by

$$
\int_0^{\pi/2} g = 0.
$$

• Upper integral: Let P be any partition of $[0, \pi/2]$. Note that $\cos^2 x$ is decreasing on each subinterval $[x_{i-1}, x_i]$ and rational numbers are dense, so

$$
M_i(g, P) = \cos^2(x_{i-1}), \quad \forall i = 1, ..., n.
$$

Consider $f : [0, \pi/2] \to \mathbb{R}$ defined by $f(x) = \cos^2 x$. We also have

$$
M_i(f, P) = \cos^2(x_{i-1}), \quad \forall i = 1, ..., n.
$$

It follows that

$$
U(g, P) = \sum_{i=1}^{n} M_i(g, P) \Delta x_i = \sum_{i=1}^{n} M_i(f, P) \Delta x_i = U(f, P).
$$

Since f and g have the same upper sum over arbitrary partitions of $[0, \pi/2]$, they have the same upper integral, hence

$$
\int_0^{\pi/2} g = \int_0^{\pi/2} f = \int_0^{\pi/2} f = \int_0^{\pi/2} \cos^2 x dx = \int_0^{\pi/2} \frac{1 + \cos 2x}{2} dx = \frac{\pi}{4}.
$$

In summary, the lower and upper integral of q is given by

$$
\int_0^{\pi/2} g = 0 \text{ and } \int_0^{\pi/2} g = \frac{\pi}{4}.
$$

Since they are unequal, q is **not** Riemann integrable.

Prepared by Ernest Fan 1

Question 2 (2016-17 Midterm Q4). Define a funtion f on $[0, 1]$ by

$$
f(x) = \begin{cases} 1, & \text{if } x = 1/n \text{ for some } n \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}
$$

Show that f is Riemann integrable and find \int_1^1 0 f.

Solution. For each natural number $N \geq 2$, define the partition P_N of [0, 1] by

$$
P_N = \left\{0, \frac{1}{N} \pm \delta, \frac{1}{N-1} \pm \delta, ..., \frac{1}{2} \pm \delta, 1 - \delta, 1\right\}, \text{ where } 2\delta < \frac{1}{N(N-1)}.
$$

(Visualize this partition!) This ensures that

$$
0<\frac{1}{N}-\delta<\frac{1}{N}+\delta<\frac{1}{N-1}-\delta<\frac{1}{N-1}+\delta<\cdots<\frac{1}{2}-\delta<\frac{1}{2}+\delta<1-\delta<1.
$$

Note that each subinterval $[x_{i-1}, x_i]$ must contain some numbers that cannot be represented by the reciprocal of some natural number, so

$$
m_i(f, P_N) = 0, \quad \forall i = 1, ..., n
$$

On the other hand, note that we have (Why?)

$$
M_i(f, P_N) = \begin{cases} 1, & \text{if } i = 1 \text{ or even} \\ 0, & \text{otherwise} \end{cases}.
$$

Therefore, the lower sum and upper sum can be calculated by

$$
L(f, P_N) = \sum_{i=1}^{n} m_i(f, P_N) \Delta x_i = 0
$$

$$
U(f, P_N) = \sum_{i=1}^{n} M_i(f, P_N) \Delta x_i = \left(\frac{1}{N} - \delta\right) + \sum_{k=2}^{N} 2\delta + \delta = \frac{1}{N} + 2(N - 1)\delta
$$

It follows that

$$
0 = L(f, P_N) \le \int_0^1 f \le \int_0^1 f \le U(f, P_n) < \frac{1}{N} + \frac{N-1}{N(N-1)} = \frac{2}{N}.
$$

Since $n \geq 2$ is arbitrary, letting $N \to \infty$ in the above inequality, we have

$$
0 \le \int_0^1 f \le \int_0^1 f \le 0.
$$

It forces the lower and upper integral of f equal zero. Thus f is Riemann integrable with

$$
\int_0^1 f = 0.
$$

Prepared by Ernest Fan 2

Question 3 (2017-18 Final Q2). .

(i) Define a function $f : [0, \infty) \to [0, \infty)$ by

$$
f(x) = \begin{cases} 1, & \text{if } x \in [n, n + 1/2^n) \text{ for some } n \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}
$$

Show that the improper integral $\int_{-\infty}^{\infty}$ $\int_0^{\infty} f(x)dx$ exists but $\lim_{x\to\infty} f(x)$ does not exist.

(ii) Let f be a non-negative R-valued function defined on [0, ∞). Suppose that $\int_{-\infty}^{\infty}$ 0 $f(x)dx$ is convergent and $\lim_{x \to \infty} f(x) = L$. Show that $L = 0$.

Solution. .

(i) The fact that $f \in \mathcal{R}[0,T]$ for all $T > 0$ is left as an exercise. (You need to find a partition P of [0, T] for each $\varepsilon > 0$ such that $U(f, P) - L(f, P) < \varepsilon$. It is tedious but the technique used is the same. You usually don't need to provide the proof for such questions if you have more to do.)

Notice that for each $n \in \mathbb{N}$,

$$
\int_0^n f(x)dx = \sum_{k=0}^{n-1} \int_k^{k+1} f(x)dx = \sum_{k=1}^{n-1} \frac{1}{2^k} = 1 - \frac{1}{2^{n-1}}.
$$

Fix $T > 0$ and let N to be a natural number such that $N \leq T < N + 1$. Since f is non-negative, we have

$$
1 - \frac{1}{2^{N-1}} = \int_0^N f(x)dx \le \int_0^T f(x)dx \le \int_0^{N+1} f(x)dx = 1 - \frac{1}{2^N}.
$$

Since $N \to \infty$ as $T \to \infty$, by Squeeze Theorem, $\int_{-\infty}^{\infty}$ 0 $f(x)dx = \lim_{T \to \infty} \int_0^T$ $f(x)dx=1.$ Now consider the sequences (x_n) and (y_n) defined by

$$
x_n = n
$$
 and $y_n = n + \frac{1}{2^n}$, $\forall n \in \mathbb{N}$.

Note the both (x_n) and (y_n) diverges properly to ∞ , but $f(x_n) = 1$ for all n and $f(y_n) = 0$ for all *n*. Hence $\lim_{x \to \infty} f(x)$ does not exist.

(ii) Since f is non-negative, we must have $L \geq 0$. Suppose on a contrary that $L > 0$. Then there exist $T > 0$ such that $f(x) \ge L/2$ for all $x > T$. Then for each $M > 0$, take $A > \max\{T, M\}$, we have

$$
\left| \int_{A}^{A+1} f(x) dx \right| = \int_{A}^{A+1} f(x) dx \ge \frac{L}{2} > 0.
$$

It follows by Cauchy Criterion that \int^{∞} 0 $f(x)dx$ is divergent. It is a contradiction.

Prepared by Ernest Fan 3

.

.

Question 4 (2016-17 Final Q2). Let f be a function defined by

$$
f(x) = \frac{\sin x}{x}, \quad \text{for } x \ge 1.
$$

- (i) Show that the integral $\int_{-\infty}^{\infty}$ 1 $f(x)dx$ is convergent.
- (ii) Show that the integral \int_{0}^{∞} 1 $|f(x)|dx$ is divergent.

Solution. .

(i) Fix $T > 1$. Note that by **Integration by Parts**,

$$
\int_{1}^{T} f(x)dx = \int_{1}^{T} \frac{\sin x}{x} dx = \left[-\frac{\cos x}{x} \right]_{1}^{T} - \int_{1}^{T} \frac{\cos x}{x^{2}} dx.
$$

Hence it suffices to show that the improper integral $\int_{-\infty}^{\infty}$ 1 $\cos x$ $\frac{\partial S}{\partial x}dx$ converges. Note that for any $A_2 > A_1 > 1$, we have

$$
\left| \int_{A_1}^{A_2} \frac{\cos x}{x^2} dx \right| \leq \int_{A_1}^{A_2} \frac{|\cos x|}{x^2} dx \leq \int_{A_1}^{A_2} \frac{1}{x^2} dx = \frac{1}{A_1} - \frac{1}{A_2} \leq \frac{1}{A_1}
$$

Hence for any $\varepsilon > 0$, we can choose $M > 1$ such that $1/M < \varepsilon$. Then whenever $A_2 > A_1 > M$,

$$
\left| \int_{A_1}^{A_2} \frac{\cos x}{x^2} dx \right| \le \frac{1}{A_1} < \frac{1}{M} < \varepsilon.
$$

It follows by Cauchy Criterion that \int^{∞} 1 $\frac{35x}{x^2}dx$ converges.

(ii) Note that since $|f(x)|$ is non-negative, we have

$$
\int_{1}^{\infty} |f(x)| dx \ge \int_{\pi}^{(N+1)\pi} \frac{|\sin x|}{x} dx = \sum_{k=1}^{N} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx.
$$

For each $k \in \mathbb{N}$, we can substitute $x = t + k\pi$, then

$$
\int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx = \int_0^{\pi} \frac{|\sin(t + k\pi)|}{t + k\pi} dt = \int_0^{\pi} \frac{\sin t}{t + k\pi} dt \ge \frac{1}{(k+1)\pi} \int_0^{\pi} \sin t dt.
$$

Write $A = \int_0^{\pi}$ 0 $\sin t dt$, we have

$$
\int_{1}^{\infty} |f(x)| dx \ge \sum_{k=1}^{N} \frac{A}{(k+1)\pi} = \frac{A}{\pi} \sum_{k=1}^{N} \frac{1}{k+1}
$$

Since the above inequality holds for all $N \in \mathbb{N}$ and the harmonic series diverges to ∞ , it follows that \int_{0}^{∞} 1 $|f(x)dx$ is also divergent.

Remark. Integration by parts is a consequence of the Product Rule and the Fundamental Theorem of Calculus. You may try to prove it as an exercise.

Question 5 (2018-19 Final Q3). Let f be a continuous function on [a, b] and $\varphi : [\alpha, \beta] \to \mathbb{R}$ be continuously differentiable such that $\varphi(\alpha) = a$ and $\varphi(\beta) = b$. Show that

$$
\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt
$$

(Hint: Consider the functions $F(u) = \int_a^u f(x)dx$ and $H(t) = F(\varphi(t))$.)

Solution. Define the functions $F : [a, b] \to \mathbb{R}$ and $H : [\alpha, \beta] \to \mathbb{R}$ by

$$
F(u) = \int_{a}^{u} f(x)dx \text{ and } H(t) = F(\varphi(t)).
$$

Since f is continuous, we have $F' = f$ by the **Fundamental Theorem of Calculus**. Also, by Chain Rule, we have $H'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$. It follows again by the Fundamental Theorem of Calculus that

$$
\int_{a}^{b} f(x)dx = F(b) - F(a) = H(\beta) - H(\alpha) = \int_{\alpha}^{\beta} H'(t)dt = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt
$$

Remark. Note that this substitution theorem is a liitle bit different from the lecture notes. The assumption on φ is relaxed, but f is required to be continuous.