MATH2060B TUTORIAL 6

More examples on integrable functions:

upper sum and lower sum. I leave it as an exercise.

#

Remark: This shows that the integral reflects the global property of functions.

7.1.5 Theorem Suppose that f and g are in $\mathcal{R}[a, b]$. Then: (a) If $k \in \mathbb{R}$, the function kf is in $\mathcal{R}[a, b]$ and $\int_{a}^{b} kf = k \int_{a}^{b} f.$ (b) The function f + g is in $\mathcal{R}[a, b]$ and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g.$ (c) If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g.$ Remark: (a) and (b) gives the vector space structure of $\mathcal{R}[a, b]$. (c) gives the order preserving property of the integral. In particular, $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$ (triangle inequality for integrals)

7.2.9 Additivity Theorem Let $f := [a, b] \to \mathbb{R}$ and let $c \in (a, b)$. Then $f \in \mathcal{R}[a, b]$ if and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case

(6)
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Remark: It guarantees that if f is integrable on any subinterval of [a, b].

Fundamental Theorem of Calculus:

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a finite set E in [a, b] and functions $f, F := [a, b] \rightarrow \mathbb{R}$ such that:

- (a) F is continuous on [a, b],
- (b) F'(x) = f(x) for all $x \in [a, b] \setminus E$,

(c) f belongs to $\mathcal{R}[a,b]$.

F : anti-derivative of f

Then we have

(1)

$$\int_{a}^{b} f = F(b) - F(a).$$

7.3.3 Definition If $f \in \mathcal{R}[a, b]$, then the function defined by

(3)
$$F(z) := \int_{a}^{z} f \quad \text{for} \quad z \in [a, b],$$

is called the **indefinite integral** of f with **basepoint** a. (Sometimes a point other than a is used as a basepoint; see Exercise 6.)

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b]. In fact, if $|f(x)| \le M$ for all $x \in [a, b]$, then $|F(z) - F(w)| \le M|z - w|$ for all $z, w \in [a, b]$.

7.3.5 Fundamental Theorem of Calculus (Second Form) Let $f \in \mathcal{R}[a, b]$ and let f be continuous at a point $c \in [a, b]$. Then the indefinite integral, defined by (3), is differentiable at c and F'(c) = f(c).

7.3.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by (3), is differentiable on [a, b] and F'(x) = f(x) for all $x \in [a, b]$.

Remark: The indefinite integral of f may not be an anti-derivative of f.

Example 2: Evaluate the integral $\int_{a}^{\pi} \cos x dx$	
Solution: Let $f(x) = \cos x$. Note that if we take $F(x) = \sin x$, then $F'(x) = f(x)$.	
Then by FTC,	
$\int_{0}^{\pi} \cos x dx = \int_{0}^{\pi} f = F(\pi) - F(O) = (\sin \pi) - (\sin O) = O$	
$J_0 = (100 \times 40 \times 10^{-1}) = (100 \times 40^{-1}) =$	#
Remark: This shows that if we know an anti-derivative of a given function. It is easy to	
calculate its integral.	
Example 3: Show that any anti-derivative of f must be differ by a constant.	
Solution: We need to show that if F_1 and F_2 are both anti-derivatives of f, i.e.,	
$F_1' = f = F_2'$	
then there exists some constant c such that $F_1(x) - F_2(x) = c$ $\forall x \in [a, b]$.	
Notice that $(F_1 - F_2)' = F_1' - F_2' = f - f = O$. The result follows.	#
Remark: This shows that the choice of the base point in the formula of anti-derivative is	
not important.	

Exercises:

Show there does not exist a continuously differentiable function f on [0, 2] such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for $0 \le x \le 2$. (Apply the Fundamental Theorem.)

Solution: It is obvious that we need to prove the assertion by contradiction. Suppose such function f on [O, 2] exists.

(Method I) Using MVT:

By MVT, there exists some $c \in (0, 2)$ such that

$$f(2) - f(0) = f'(c)(2 - 0)$$

It follows that

$$2 \ge f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{4 - (-1)}{2 - 0} = 2.5$$

This is a contradiction.

(Method 2) Using FTC:

By FTC, we have

$$\int_{0}^{2} f'(x) dx = f(2) - f(0) = 5$$

On the other hand, since $f'(x) \le 2$ for all x [O, 2], then

$$\int_{0}^{2} f'(x) \, dx \leq \int_{0}^{2} 2 = 4$$

This is a contradiction.