MATH2060B TUTORIAL 6

More examples on integrable functions:

upper sum and lower sum. I leave it as an exercise.

Remark: This shows that the integral reflects the global property of functions.

 $#$

7.1.5 Theorem Suppose that f and g are in $\mathcal{R}[a, b]$. Then: (a) If $k \in \mathbb{R}$, the function kf is in $\mathcal{R}[a, b]$ and $\int_{a}^{b} kf = k \int_{a}^{b} f.$ **(b)** The function $f + g$ is in $\mathcal{R}[a, b]$ and $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g.$ (c) If $f(x) \le g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g.$ Remark: (a) and (b) gives the vector space structure of R[a, b]. (c) gives the order preserving property of the integral. In particular, $\left|\int_a f \right| \leq \int_a |f|$ (triangle inequality for integrals)

7.2.9 Additivity Theorem Let $f := [a, b] \rightarrow \mathbb{R}$ and let $c \in (a, b)$. Then $f \in \mathcal{R}[a, b]$ if and only if its restrictions to $[a, c]$ and $[c, b]$ are both Riemann integrable. In this case

(6)
$$
\int_a^b f = \int_a^c f + \int_c^b f.
$$

Remark: It guarantees that if f is integrable on any subinterval of [a, b].

Fundamental Theorem of Calculus:

CULUS:

n) Suppose there is a fin

F : anti-derivative of f in [a, b] and functions f, $F := [a, b] \rightarrow \mathbb{R}$ such that:

- (a) *F* is continuous on [a, b],
- (b) $F'(x) = f(x)$ for all $x \in [a, b] \backslash E$,
- (c) f belongs to $\mathcal{R}[a,b]$.

Then we have

 (1)

$$
\int_a^b f = F(b) - F(a).
$$

If $f \in \mathcal{R}[a, b]$, then the function defined by 7.3.3 Definition

(3)
$$
F(z) := \int_a^z f \quad \text{for} \quad z \in [a, b],
$$

is called the **indefinite integral** of f with **basepoint** a. (Sometimes a point other than a is used as a basepoint; see Exercise 6.)

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on $[a, b]$. In fact, if $|f(x)| \leq M$ for all $x \in [a, b]$, then $|F(z) - F(w)| \leq M|z - w|$ for all $z, w \in [a, b]$.

7.3.5 Fundamental Theorem of Calculus (Second Form) Let $f \in \mathcal{R}[a, b]$ and let f be continuous at a point $c \in [a, b]$. Then the indefinite integral, defined by (3), is differentiable at c and $F'(c) = f(c)$.

7.3.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by (3), is differentiable on [a, b] and $F'(x) = f(x)$ for all $x \in [a, b]$.

Remark: The indefinite integral of f may not be an anti-derivative of f.

Exercises:

1. Show there does not exist a continuously differentiable function f on $[0, 2]$ such that

Solution: It is obvious that we need to prove the assertion by contradiction. Suppose such function f on [0, 2] exists. of exist a continuously differential

and $f'(x) \le 2$ for $0 \le x \le 2$. (App

i that we need to prove the assemble the function f on [O, 2] exists.

sing MVT:

there exists some $c \in (0, 2)$ such
 $f(2) - f(0) = f'(c) (2 - 0)$

that

(Method 1) Using MVT:

By MVT, there exists some c ϵ (0, 2) such that

$$
f(2) - f(0) = f'(c) (2 - 0)
$$

It follows that

$$
2 \ge f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{4 - (-1)}{2 - 0} = 2.5
$$

This is a contradiction.

(Method 2) Using FTC:

By FTC, we have

since

\n
$$
\int_{0}^{2} f'(x) \, dx = f(2) - f(0) = 5
$$
\nand, since

\n
$$
f'(x) \leq 2 \text{ for all } x \in \int_{0}^{2} f'(x) \, dx \leq \int_{0}^{2} 2 = 4
$$

On the other hand, since $f'(x) \leq 2$ for all $x\,$ [O, 2], then

$$
\int_0^2 f'(x) \, dx \le \int_0^2 2 = 4
$$

This is a contradiction.