MATH2060B TUTORIAL 5

For Riemann Integration Theory, we will follow closely to the notes uploaded in the course webpage instead of the textbook.

Construction of Riemann Integral:

- * We always consider bounded functions f, q, h, ... etc defined on a closed bounded interval [a, b], and let m and M be an lower and upper bound of f respectively. i.e., $m \leq f(x) \leq M$ for any $x \in [a, b]$. -
- $*$ A partition P of the interval [a, b] is a finite set of points $x_0, x_1, ..., x_n$ such that

$$
a = \chi_0 < \chi_1 < \ldots < \chi_n = b.
$$

* For any partition P of [a, b], denote

•
$$
\Delta x_i = x_i - x_{i-1}
$$
 for $i = 1, 2, ..., n$

- $\frac{\Delta x_i x_i x_{i-1}}{\ln \rho}$ ·
- \ast For any partition P of [a, b] and function f defined on [a, b], denote
- $m_i(f, D) = inf \{ f(x) : x \in [x_{i-1}, x_i] \}$. Always exist because ii iiiitlnis or in the fine of $[0, b]$ and function f defined on $[a, b]$, denote

in $m_i(f, D) = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$.

in $M_i(f, D) = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$.

in $M_i(f, D) = M_i(f, D) - m_i(f, D) = \sup \{ f(x) - f(y) : x, y \in [x_{i-1}, x_i] \}$

in m_i

in m_i

•
$$
M_i(f, D) = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}
$$
.

 $\omega_i(f, \mathcal{D}) = M_i(f, \mathcal{D}) - m_i(f, \mathcal{D}) = \sup \{ \, |f(x) - f(y)| : x, y \in [x_{i-1}, x_i] \, \}.$ · i \mathbf{u}_i , \mathbf{v}_j – \mathbf{v}_i , \mathbf{u}_j , \mathbf{v}_j – \mathbf{u}_i 4 ϵ $|X_{i-1}, X_i$

Why?

- (Lower sum) $L(f, p) = \sum m_i(f, p) \Delta x_i$ $m(b-a) \le L(f, p) \le U(f, p) \le M(b-a)$ We always have
- (Upper sum) $U(f, p) = \sum M_i(f, p) \Delta x_i$ for any partition P.
- \ast For any function f defined on [a, b], denote

By partition P or [a, b] and function T defined on [a, b], denote

\n•
$$
m_i(f, D) = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}
$$
.

\n• $M_i(f, D) = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$.

\n• $m_i(f, D) = M_i(f, D) - m_i(f, D) = \sup \{ f(x) - f(y) \mid x, y \in [x_{i-1}, x_i] \}$.

\n• $m_i(f, D) = M_i(f, D) - m_i(f, D) \Delta x_i$.

\n• $(lower sum) U(f, D) = \sum m_i(f, D) \Delta x_i$.

\n• $(Upper sum) U(f, D) = \sum M_i(f, D) \Delta x_i$.

\n• $(Upper sum) U(f, D) = \sum M_i(f, D) \Delta x_i$.

\n• $(Lower integral) \int_a^b f = \sup \{ L(f, D) : D \text{ is a partition of } [a, b] \}$.

\n• $(lower integral) \int_a^b f = \inf \{ U(f, D) : D \text{ is a partition of } [a, b] \}$.

\n• $(Upper integral) \int_a^b f = \inf \{ U(f, D) : D \text{ is a partition of } [a, b] \}$.

\n• $(Upper integral) \int_a^b f = \inf \{ U(f, D) : D \text{ is a partition of } [a, b] \}$.

Upper integral	$\frac{1}{2}$	For a partition of [a, b]
----------------	---------------	---------------------------

If f has equal upper and lower integral, we say that f is Riemann integrable. * We write $f \in R[a, b]$ in this case and pper integral) $\int_{a}^{b} f = inf \{ U(f, p) : E$
all upper and lower integral, we say
e R[a, b] in this case and
 $\int_{a}^{b} f = \int_{a}^{b} f = \int_{a}^{\overline{b}}$

 $\int_{a}^{b} f = \int_{a}^{b} f = \int_{f}^{b} f$ (integral of f)

Always exists by this observation!

 $\bigwedge^{\mathcal{B}}$

Example 2: Show that the Dirichlet's function is not Riemann integrable on [0, 1]. Solution: Recall that the Dirichlet's function is defined by $g(x) = \begin{cases} 1, & \text{if } x \text{ is rational;} \\ 0, & \text{if } x \text{ is irrational;} \end{cases}$ $\overline{\left(\begin{array}{c} 0 \end{array} \right)}$ O, if x is irrational. We need to show that it has unequal upper and lower integrals. Fix any partition P of [O, I]. On each subinterval [x_i ., x_i], we have $m_i (g, \mathcal{D}) = \mathcal{O}$ and $\mathsf{M}_i (g, \mathcal{D}) = \mathsf{D}$ (We don't know about Δx,!) Then $L(q, \mathcal{D}) = \Sigma$ m, $\Delta x_i = O$, and $U(q, \mathcal{D}) = \Sigma M_i \Delta x_i = \Sigma \Delta x_i = I$. Since the partition P is arbitrary, it follows that $f = O$ and $f = 1$. is arbitrary, it follows that
 $\int_{a}^{b} f = 0$ and $\int_{a}^{\overline{b}} f = 1$.

Useful Propositions:

- $\bullet\,$ Let f be a function defined on [a, b] and P, Q be partitions of [a, b].
	- $*$ If $P \in Q$, then $L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P)$.

* II P = Q, Illericity P * CII, G
* L(f, P) $\leq \int_{a}^{b} f \leq \int_{a}^{b} f \leq U(f, Q)$

 \cdot Let f be a bounded function defined on [a, b]. Then $\mathsf{f} \epsilon \mathsf{R}$ [a, b] if and only if for any $\varepsilon > 0$, there exists a partition ρ of [a, b] such that

U(f, P) - L(f, P) = Σ wi(f, P) $\Delta x_i \leq \varepsilon$.

 \cdot \cdot C[a, b] \in R[a, b].

Remark: Let me say more about the proof of Lemma 1.2 (i) in the notes. It claims that it suffices to show the case that $Q = \mathsf{D} \cup \{c\}$. i.e., Q contains exactly one more point than P. Here is why: Suppose in general that Q contains k more points <u>than P. i.e., $Q = \mathsf{D} \cup \{c_1, c_2, ..., c_k\}$. If we write</u> $Q_1 = D_0 \{c_1\}, Q_2 = Q_0 \cup \{c_2\}, ..., Q = Q_k = Q_{k-1} \cup \{c_k\}.$ Then by applying the special case k times, we have $L(f, D) \otimes L(f, Q_1) \otimes L(f, Q_2) \otimes \otimes L(f, Q_k) \oplus L(f, Q).$

Remark: Can the continuity of f be dropped?