
MATH2060B TUTORIAL 5

Construction of Riemann Integral:

For Riemann Integration Theory, we will follow closely to the 
notes uploaded in the course webpage instead of the textbook.
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We always consider bounded functions f, g, h, ... etc defined on a closed bounded
interval [a, b], and let m and M be an lower and upper bound of f respectively.

A partition P of the interval [a, b] is a finite set of points x , x , ..., x  such that
a = x  < x  < ...... < x  = b.

For any partition P of [a, b], denote 
Δx  = x  - x for i = 1, 2, ..., n

|| P || = max Δx
For any partition P of [a, b] and function f defined on [a, b], denote

i.e., m < f(x) < M for any x [a, b].

m (f, P) = inf { f(x) : x [x  , x ] }.
M (f, P) = sup { f(x) : x [x  , x ] }.

Always exist because 
f is bounded!

ω (f, P) = M (f, P) - m (f, P) = sup { |f(x) - f(y)| : x, y [x  , x  ] }.

For any function f defined on [a, b], denote

(Lower sum) L(f, P) = Σ m (f, P) Δx
(Upper sum) U(f, P) = Σ M (f, P) Δx

f = sup { L(f, P) : P is a partition of [a, b] }

(Upper integral)

(Lower integral)

f = inf { U(f, P) : P is a partition of [a, b] }

m(b-a) < L(f, P) < U(f, P) < M(b-a)
We always have

for any partition P.

Always exists by 
this observation!

If f has equal upper and lower integral, we say that f is Riemann integrable.
We write f   R[a, b] in this case and

f = f = f (integral of f)

Why?
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Example 1: Visualize the notations in a picture.
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a = x x  = bx x x x

Δx Δx|| P || = Δx

P = { a, x , x , x , x , b }

m

M

y = f(x)

L(f, P) = Σ m (f, P) Δx
U(f, P) = Σ M (f, P) Δx

ω (f, P)

y

x

M (f, P)

m (f, P)

Example 2: Show that the function f(x) = x is Riemann integrable on [0, 1].
Solution: We need to show that f has the same lower and upper integrals.

For each n , consider the partition Pn of [0, 1] defined by
Pn = {0, 1/n, 2/n, ..., 1}.

Compute the corresponding upper and lower sum:

On each subinterval [(i-1)/n, i/n], where i = 1, 2, ..., n, we have
m (f, Pn) =  (i-1)/n M (f, Pn) =  i/nand

L(f, Pn) = Σm Δx  = 

Δx  = 1/n,

1
n Σ(i - 1) = 1

n
n(n - 1)

2 = 1
2 (1 - 1/n)

U(f, Pn) = ΣM Δx  = 1
n Σ i = 1

n
n(n + 1)

2 = 1
2 (1 + 1/n)

It follows that 1
2 (1 - 1/n) < f < f < 1

2 (1 + 1/n), for all n

Letting n , we conclude that f is Riemann integrable with integral 1/2.
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Useful Propositions:
Let f be a function defined on [a, b] and P, Q be partitions of [a, b].

If P   Q, then L(f, P) < L(f, Q) < U(f, Q) < U(f, P).
L(f, P) < f < f < U(f, Q)

Example 2: Show that the Dirichlet’s function is not Riemann integrable on [0, 1].
Solution: Recall that the Dirichlet’s function is defined by

g(x) =
1, if x is rational;
0, if x is irrational.

We need to show that it has unequal upper and lower integrals.
Fix any partition P of [0, 1]. On each subinterval [x  , x ], we have

m (g, P) =  0 M (g, P) =  1and (We don’t know about Δx !)

Then L(g, P) = Σ m Δx  = 0, and U(g, P) = Σ M Δx  = Σ Δx  = 1.
Since the partition P is arbitrary, it follows that

f = 0 f = 1.and

Let f be a bounded function defined on [a, b]. Then f  R[a, b] if and only if
for any ε > 0, there exists a partition P of [a, b] such that 

U(f, P) - L(f, P) = Σ ω (f, P)Δx  < ε.

C[a, b]   R[a, b].
Remark: Let me say more about the proof of Lemma 1.2 (i) in the notes. It claims that

it suffices to show the case that Q = P   {c}. i.e., Q contains exactly one more
point than P. Here is why: Suppose in general that Q contains k more points 
than P. i.e., Q = P  {c , c , ..., c }. If we write

Q  = P  {c }, Q  = Q  {c }, ..., Q = Q  = Q {c }.
Then by applying the special case k times, we have

L(f, P) < L(f, Q ) < L(f, Q ) < ...... < L(f, Q ) = L(f, Q).
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Exercises:
1.    Suppose that f is a continuous and non-negative function defined on [a, b]. If the 

f =

integral of f is 0, show that f is constantly zero.
Solution: We show the assertion by contradiction.

Suppose on a contrary that f(c) > 0 for some c  [a, b]. Since f is continuous
at c, there exists δ > 0 such that whenever | x - c | < δ,

| f(x) - f(c) | < f(c)/2. (This act as ε)

i.e., 0 < f(c)/2 < f(x) < 3f(c)/2 on (c-δ, c+δ)
Now consider the partition P of [a, b] defined by P = { a, u, v, b }, where

cc-δ c+δ

f(c) 
f(c)/2 

3f(c)/2 

u v

a < c-δ < u < v < c+δ < b
Then we can compute the lower sum:

L(f, P) = m (f, P)Δx + m (f, P)Δx + m (f, P)Δx 
> + m (f, P)Δx  +0

It is a contradiction because
f > L(f, P) > 00 =

Remark: Can the continuity of f be dropped?

0
> 0 (> 0 is not enough in this proof!)
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