MATH2060B TUTORIAL 3

Reading Exercise:

6.2.1 Interior Extremum Theorem Let c be an interior point of the interval I at which $f: I \to \mathbb{R}$ has a relative extremum. If the derivative of f at c exists, then f'(c) = 0.

6.2.2 Corollary Let $f: I \to \mathbb{R}$ be continuous on an interval I and suppose that f has a relative extremum at an interior point c of I. Then either the derivative of f at c does not exist, or it is equal to zero.

6.2.3 Rolle's Theorem Suppose that f is continuous on a closed interval I := [a, b], that the derivative f' exists at every point of the open interval (a, b), and that f(a) = f(b) = 0. Then there exists at least one point c in (a, b) such that f'(c) = 0.

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval I := [a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one point c in (a, b) such that

$$f(b) - f(a) = f'(c)(b - a).$$

Applications:

(I) Determine whether a differentiable function is increasing or decreasing Definition: A function $f: I \rightarrow \mathbb{R}$ is said to be increasing on Iif $\forall x, y \in I$ with x < y, $f(x) \leq f(y)$.

6.2.7 Theorem Let $f : I \to \mathbb{R}$ be differentiable on the interval I. Then:

- (a) f is increasing on I if and only if $f'(x) \ge 0$ for all $x \in I$.
- **(b)** *f* is decreasing on *I* if and only if $f'(x) \leq 0$ for all $x \in I$.

(II) First Derivative Test for relative extrema

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval I := [a, b] and let c be an interior point of I. Assume that f is differentiable on (a, c) and (c, b). Then:

(a) If there is a neighborhood $(c - \delta, c + \delta) \subseteq I$ such that $f'(x) \ge 0$ for $c - \delta < x < c$ and $f'(x) \le 0$ for $c < x < c + \delta$, then f has a relative maximum at c. (b) If there is a neighborhood $(c - \delta, c + \delta) \subseteq I$ such that $f'(x) \le 0$ for $c - \delta < x < c$ and $f'(x) \ge 0$ for $c < x < c + \delta$, then f has a relative minimum at c.

(III) Deduce useful inequalities	
Example 1: Show that $-x \leq \sin x \leq x \forall x \geq 0$.	
Solution: Let $x \ge 0$.	
Case I: If $x = 0$. Then $-x = \sin x = x = 0$.	
Case 2: If $x > 0$. Then consider the sine function.	
Note that it is continuous on $[O, x]$ and differentiable on (O, x) .	
Hence by MVT, there exist $c \in (O, x)$ such that	
$\sin x - \sin 0 = (\cos c)(x - 0)$	
sin x = x cos c (*)	
Note that since $-1 \le \cos c \le 1$ and $x \ge 0$, we have	
-X ≤ X COS C ≤ X.	
i.e., by $(*)$, $-x \leq \sin x \leq x$.	#

Example 2: Show that $\frac{x-1}{x} < \ln x < x - 1 \forall x > 1$.	
Solution: Let $x > 1$. Consider the function In.	
Note that it is continuous on $[1, x]$ and differentiable on $(1, x)$.	
Hence by MVT, there exist $c \in (1, x)$ such that	
$\ln x - \ln 1 = (1/c)(x - 1)$	
$\ln x = (x - 1)/c$ (*)	
Note that since $O < 1 < c < x$ and $x - 1 > O$, we have	
(x - 1)/x < (x - 1)/c < (x - 1)/1.	
i.e., by $(*)$ $(x - 1)/x < \ln x < x - 1$.	*
(IV) Approximations	
Example: Without Using a calculator, correct 105 to I decimal places.	
Solution: Consider the square root function.	
Note that it is continuous on [100, 105] and differentiable on (100, 105).	
Hence by MVT, there exist $c \in (100, 105)$ such that	
$\sqrt{105} - \sqrt{100} = (1/2\sqrt{c})(105 - 100)$	
$\sqrt{105} = 10 + 5/2\sqrt{c}$ (*)	
Note that since $100 < c < 105 < 121$, we have $10 < \sqrt{c} < 11$	
Hence together with (*),	
l0 + 5/2(II) <√105 < 10 + 5/2(10) (#)	
Note that $10 + 5/2(11) = 225/22 = 10.227 > 10.22$	
10 + 5/2(10) = 45/4 = 10.25	
Thus, $10.22 < \sqrt{105} < 10.25$, therefore $\sqrt{105} = 10.2$ (1 d.p.)	
Remark. Using the upper bound 1025 of 105 we can replace the 11 in (\pm)	

Remark: Using the upper bound 10.25 of 7105, we can replace the 11 in (#) because $\sqrt{c} < \sqrt{105} < 10.25$. We then get a better lower bound 10 + 5/2(10.25) = 420/41 = 10.243... > 10.24.

Exercises: Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$. Solution: We need to show by definition that $\forall \varepsilon > 0$, $\exists a \in \mathbb{R}$ such that whenever x > a, $|g(x) - 0| < \varepsilon$. Let $\varepsilon > O$. Since $f'(x) \rightarrow O$ as $x \rightarrow +\infty$, there exists $a \in \mathbb{R}$ such that whenever x > a, $|f'(x) - O| < \varepsilon$. (*) Now fix any x > a. Note that f is continuous on [x, x + 1] and differentiable on (x, x + 1). By MVT, there exists $c \in (x, x + 1)$ such that g(x) = f(x+1) - f(x) = f'(c)((x+1) - x) = f'(c)definition MVT(#) Also note that c > x > a. Thus, (*) holds for c. It follows that $|g(x) - O| = |f'(c) - O| < \varepsilon.$

2. Suppose g is a real function on R^1 , with bounded derivative (say $|g'| \le M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough. (A set of admissible values of ε can be determined which depends only on M.)

