MATH2060B Mathematical Analysis I1 Tutorial 12

Series of Functions

Similar to series of real numbers; we can define series of functions and the concept of absolute
convergence (because of series) and uniform convergence (because of functions).

Definition (c.f. Definition 9.4.1). Let (f,) be a sequence of real-valued functions defined
on A C R. The series ) f, is said to converge (pointwisely) to a function f on A if its

partial sum
Sp = Z fk
k=1

is convergent to f. i.e., for each x € A and for each £ > 0, there exists N € N such that

<e, Vn>N.

S Jila) - fa)

In this case, we denote

flo)=lim > fi(z) or f=) fu
k=1 n=1

The series is said to converge uniformly to f on A if its partial sum s,, converges uniformly
to f. i.e., for each € > 0, there exists N € N such that

<e, VYn> N and Vz € A.

> fula) = f(x)

Since there are nothing new but only rephrasing old definitions, previous results on
uniform convergence of sequence of functions apply on series of function.

Exercise 1 (c.f. Theorem 9.4.2, 9.4.3 & 9.4.4). Formulate the theorems on interchanging
limits of uniformly convergent series of functions.

Cauchy Criterion (c.f. 9.4.5). Let (f,,) be a sequence of functions defined on A. The series
> fu is uniformly convergent on A if and only if for each € > 0 there exists N € N such that

| foi1(®) + fate () + -+ fagp(z)| <e, VR >N, VpeN, VzeA
The most important test of uniform convergence of series of functions is the following:

Weierstrass M-Test (c.f. 9.4.6). Let (f,) be a sequence of real-valued functions defined on
A CR and (M,) be a sequence of positive real numbers such that |f,(z)| < M, for z € A,
n € N. If the series > M, is convergent, then >  f, is uniformly convergent on D.
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Example 1 (c.f. Section 9.4, Ex.1). Discuss the convergence of the following series of
functions.

(a) Z M, where z € R.

n2

b ——, wh 0.
(b) ;nsz,w ere T #
(c) i L where x > 0
cgn + 17 -
Solution. .

(a) We can directly apply Weierstrass M-Test. Notice that

1
|fn(x)|:—|cosm|g—2, VneN, VzeR
n

n2

Hence by Weierstrass M-Test, the series is uniformly convergent.

(b) Let’s discuss pointwise convergence first. Obviously, we have

o0 2

> =1 1 1 T
WERN RN

n=1 n=1

Hence the series converges pointwisely. Since the series is unbounded near 0, it is nat-
ural to think that it is not uniformly convergent on its domain of definition. However,
if we fix a > 0, we can show that the series is uniformly convergent for |z| > a:

fal@)] = — <

— b
n2x? — n2q?

VneN, |z|>a.

Hence by M-Test, the series is uniformly convergent on (—oo, —a] U [a, 00).

(c) First of all, if 0 < 2 <1, then
1

li 0.
Mmoo
Hence by n-th Term Test, the series is divergent. On the other hand, if z > 1, then

zh+1 T

1 1 1\"
@) = <—=(—>, UneN. Vool

Hence by the Comparison Test, the series is converge pointwisely for z > 1. Similar
to the above example, if we fix @ > 1, then the series converges uniformly on [a, 00).
Let’s see why it is not uniformly convergent on (1,00) by using Cauchy Criterion.
For each N € N, take n = N, p=1 and = = 2/("*1) € (1,00). Then

1 1 1

[forr(@) -+ funp@) = gy =507 = 5

Hence the series is not uniformly convergent.
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Power Series

Power series is a typical example of series of function and is of great interest.

Definition (c.f. Definition 9.4.7). Let (a,) be a sequence of real numbers and ¢ € R. A
(formal) power series centered at c is defined as

f(x) = anlz =0
n=0
Denote dom(f) as the set of z € R for which f(x) is convergent.

Remark. Notice that ¢ € dom(f), so dom(f) must be non-empty. By a translation, we can
restrict the attention on power series that centered at 0. i.e., the power series of the form

flz) = Z anpx".
n=0

Definition (c.f. Definition 9.4.8). Let f be a power series centered at 0. The radius of
convergence R of f is defined to be the supremum of dom(f), i.e.,

0. if dom(f) = {0},
R = ¢ supdom(f), if dom(f) is bounded,
00, if dom(f) is unbounded.

The following theorem describes a nice behaviour of the domains of power series.

Cauchy-Hadamard Theorem (c.f. 9.4.9). Let R be the radius of convergence of a power
series f centered at 0. Then f converges absolutely for |z| < R and diverges for |x| > R.

Theorem (c.f. Theorem 9.4.10). Let R be the radius of convergence of a power series f
centered at 0. Let 0 <n < R. Then f converges uniformly on [—n,n].

Remark. The Cauchy Hadamard Theorem tells us that dom(f) must be an interval
with endpoints —R and R. i.e., dom(f) takes one of the following forms:

{0}7 (_00700)7 (_R7 R)? [_R7 R]? (_R7 R]? [_Rv R)

However, the behaviour of the power series at the endpoints —R and R is unclear.
Also, the radius of convergence is determined by the coefficients a,,. We can find it by

An1

1
= = limsupl|a,|"" = lim
5 P [an|

n—00 n—oo | Gy,

with the convention that 1/0 = oo and 1/00 = 0 and provided that the limit exists.
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Since power series fulfils some uniformly convergent property, the theorems on inter-
changing limits applies.

Theorem (c.f. Theorem 9.4.11 & 9.4.12). Let f(z) = >_ a,z™ be a power series centered at
0 with radius of convergence R. Then

(i) f is continuous on dom(f).

(ii) [ can be integrated term-by-term. i.e., for any x € (—R, R),

’ t)dt = Lttt = A
/0f< Za/ n—l—l

(i1i) f can be differentiated term-by-term. i.e., for any x € (—R, R),

oo / oo
= 5 (anx”> = E na,x"

n=0 n=1

Moreover, the integrated and differentiated series have the same radius convergence R as f.

Remark. We can see from the above theorem that a power series is infinitely differentiable.
If we consider f*)(0) for k = 0,1,2,..., we see that the coefficients a,, are given by

1
ap = —

(n) _
—f™(0), vn=012,..

Compare it with the Taylor series of f for more mathematical insights.
Example 2. Observe the following examples of powers series:

(a) The power series expansion of e” is given by

1 1 1
e$zzmx”:1+x+§x2+6x3+~--, z € R.

(b) The power series expansion of sinz is given by

: . (_1)n 2n+1 1 1 25
= " = 7 =, € R.

sinx ; (2n+1)!x T — Gx + 120 z

(c) The power series expansion of cosz is given by
— (=), +1 1 L,
= =1 —rt = e R.
cosT 2 T 220 + 24x iy
(d) The power series expansion of 1/(1 + z) is given by
:Zx”:1+$+x2+---, lx| < 1.

Prepared by Ernest Fan 4



MATH2060B Mathematical Analysis I1 Tutorial 12

Example 3 (c.f. Section 9.4, Ex.18). Show that if |z| < 1, then

R S L R O VN S
arcsma:-% 2:4---(2n) 2n—|—1x

Solution. Notice that the derivative of arcsin x is given by

1
i(arcsin x) =

dx V1—22

Hence we can find the power series of its derivative and integrate term-by-term to retrieve
the power series of arcsinz. Recall the Generalized Binomial Theorem: If o € R, then

(1+1)* = i <z>t" It < 1.

n=0

Since |z| < 1, we have |(—z?)| < 1. We can apply the theorem for « = —1/2 and ¢t = —z?.

am S (L)eer-E(ore

Now we compute

—1/2\ (=3 (=5-1)---[-5—-(n—-1)] 1-3-..(2n—1)
( n >_ n! = (=1) 2-4---(2n)

It follows that

VI—a? Z (2n)

After intergrating term-by-term, we have

R R C ek VN S
arcsmx—; 24 (2n) 2n—|—1$ .
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