Absolute Convergence and Conditional Convergence

We have discussed the notation of the convergence of series of numbers. Let's talk about a stronger version of convergence.

 $\sum x_n$ is said to *converge absolutely* if the series $\sum |x_n|$ is convergent. It is said to *converge* **Definition** (c.f. Definition 9.1.1). Let (x_n) be a sequence of real numbers. The series conditionally if it is convergent but not absolutely convergent.

The following theorem is a quick deduction from the **Cauchy Criterion of Series** and the triangle inequality.

Theorem (c.f. Theorem 9.1.2). A series must be convergent if it is absolutely convergent.

Example 1. Observe the following examples.

• Every convergent series with non-negative terms is absolutely convergent. For example,

$$
\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{1}{2^n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{|\cos n|}{n^2}.
$$

- The series $\sum_{n=1}^{\infty} \frac{\cos n}{n}$ $\frac{\partial^2 u}{\partial n^2}$ is absolutely convergent from the discussion in the previous tutorial.
- The (alternating harmonic) series $\sum (-1)^{n+1}/n$ is conditionally convergent. Since the harmonic series is divergent, it suffices to show that this series is convergent. Note that

$$
s_{2n} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right)
$$

$$
s_{2n+1} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2n} - \frac{1}{2n + 1}\right)
$$

Thus (s_{2n}) is an increasing sequence and (s_{2n+1}) is a decreasing sequence with

$$
0 < s_{2n} < s_{2n+1} < 1.
$$

By Monotone Convergence Theorem, both subsequences are convergent. Moreover, they converge to the same value α because

$$
s_{2n+1} = s_{2n} + \frac{1}{2n+1}.
$$

Then for any $\varepsilon > 0$, there exist $N_1, N_2 \in \mathbb{N}$ such that

$$
|s_{2n} - \alpha| < \varepsilon, \quad \forall n \ge N_1 \quad \text{and} \quad |s_{2n+1} - \alpha| < \varepsilon, \quad \forall n \ge N_2. \tag{1}
$$

Take $N = \max\{2N_1, 2N_2 + 1\}$. Then whenever $n \geq N$, by (1), we have

$$
\frac{n}{2} \ge \frac{N}{2} \ge N_1 \Longrightarrow |s_n - \alpha| = |s_{2(\frac{n}{2})} - \alpha| < \varepsilon \qquad \text{if } n \text{ is even};
$$
\n
$$
\frac{n-1}{2} \ge \frac{N-1}{2} \ge N_2 \Longrightarrow |s_n - \alpha| = |s_{2(\frac{n-1}{2})+1} - \alpha| < \varepsilon \qquad \text{if } n \text{ is odd}.
$$

Hence $|s_n - \alpha| < \varepsilon$ no matter *n* is even or odd. It follows that the alternating harmonic series also converge to α .

Prepared by Ernest Fan 1

Rearrangement Theorem (c.f. 9.1.5). Let $\sum x_n$ be an absolutely convergent series. Then for any bijection $\sigma : \mathbb{N} \to \mathbb{N}$, $\sum x_{\sigma(n)}$ is also convergent and

$$
\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n=1}^{\infty} x_n.
$$

Remark. This convergence property is called unconditional convergence. The rearrangement theorem says that unconditional convergence is implied by absolute convergence.

Tests of Absolute Convergence

Last time, we have discussed some test for convergence. Let's recall the Comparison Test and see some more tests of absolute convergence.

Comparison Test (c.f. 3.7.7). Let (x_n) and (y_n) be sequences of real numbers. Suppose there exists $K \in \mathbb{N}$ such that

$$
0 \le x_n \le y_n, \quad \forall n \ge K.
$$

Then

- (a) the convergence of $\sum y_n$ implies the convergence of $\sum x_n$.
- (b) the divergence of $\sum x_n$ implies the divergence of $\sum y_n$.

Root Test (c.f. 9.2.2). Let (x_n) be a sequence real numbers.

(a) If there exists $r < 1$ and $K \in \mathbb{N}$ such that

$$
|x_n|^{1/n} \le r, \quad \forall n \ge K,
$$

then $\sum x_n$ is absolutely convergent.

(b) If there exists $K \in \mathbb{N}$ such that

$$
|x_n|^{1/n} \ge 1, \quad \forall n \ge K,
$$

then $\sum x_n$ is divergent.

Ratio Test (c.f. 9.2.4). Let (x_n) be a sequence of non-zero real numbers.

(a) If there exists $r < 1$ and $K \in \mathbb{N}$ such that

$$
\left|\frac{x_{n+1}}{x_n}\right| \le r, \quad \forall n \ge K,
$$

then $\sum x_n$ is absolutely convergent.

(b) If there exists $K \in \mathbb{N}$ such that

$$
\left|\frac{x_{n+1}}{x_n}\right| \ge 1, \quad \forall n \ge K,
$$

then $\sum x_n$ is divergent.

Prepared by Ernest Fan 2

Integral Test (c.f. 9.2.6). Let $f : [1, \infty) \to \mathbb{R}$ be a continuous, decreasing, positive function. Then $\sum f(n)$ is convergent if and only if the improper integral

$$
\int_{1}^{\infty} f(x)dx
$$

exists. In this case, the limit is given by

$$
\sum_{n=1}^{\infty} f(n) = \int_{1}^{\infty} f(x) dx.
$$

Example 2 (c.f. Section 9.2, Ex.9). Let $0 < a < 1$ and consider the series

$$
a^{2} + a + a^{4} + a^{3} + \cdots + a^{2n} + a^{2n-1} + \cdots
$$

Show that the Root Test applies but the Ratio Test does not apply.

Remark. Notice that the series is a rearrangement of the absolutely convergent geometric series so it must be convergent.

Solution. To apply the **Root Test**, we need to estimate $|x_n|^{1/n}$ for large *n*'s. For even $n = 2k$,

$$
|x_n|^{1/n} = |x_{2k}|^{1/2k} = |a^{2k-1}|^{1/2k} = a^{1-1/2k} = a^{1-1/n}.
$$

For odd $n = 2k + 1$,

$$
|x_n|^{1/n} = |x_{2k+1}|^{1/(2k+1)} = |a^{2k+2}|^{1/(2k+1)} = a^{1+1/(2k+1)} = a^{1+1/n}.
$$

In both cases, we have $|x_n|^{1/n} = a^{1 \pm 1/n}$. Hence

$$
\lim_{n \to \infty} |x_n|^{1/n} = \lim_{n \to \infty} a^{1 \pm 1/n} = a < 1.
$$

Therefore we see that the Root Test applies.

To apply the **Ratio Test**, we need to estimate $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ x_{n+1} \bar{x}_n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ for large n 's. For even $n = 2k$,

$$
\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x_{2k+1}}{x_{2k}}\right| = \frac{a^{2k+2}}{a^{2k-1}} = a^3 < 1.
$$

For odd $n = 2k + 1$,

$$
\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x_{2k+2}}{x_{2k+1}}\right| = \frac{a^{2k+1}}{a^{2k+2}} = \frac{1}{a} \ge 1.
$$

Hence the sequence $(|x_{n+1}/x_n|)$ is alternating between a^3 and a^{-1} , which lie in opposite sides of 1. Therefore we see that the Ratio Test does not apply.

Example 3 (c.f. Section 9.2, Ex.2, 3, 4 $\&$ 7). Determine the convergence of the following series.

(a)
$$
\sum_{n=1}^{\infty} n^n e^{-n}
$$

\n(b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
\n(c) $\sum_{n=2}^{\infty} (\ln n)^{-\ln n}$
\n(d) $\sum_{n=2}^{\infty} (n \ln n)^{-1}$
\n(e) $\sum_{n=1}^{\infty} n! e^{-n^2}$
\n(f) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$

Solution. Let's check the convergence of the series using suitable tests.

(a) We use the Root Test here. Note that

$$
|x_n|^{1/n} = |n^n e^{-n}|^{1/n} = \frac{n}{e} \ge 1, \quad \forall n \ge 3.
$$

Hence the series is divergent.

(b) We use the Ratio Test here. Note that

$$
\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \frac{(n+1)!}{n!} \cdot \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n}.
$$

Therefore we have

$$
\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = \frac{1}{e} < 1.
$$

Hence the series is convergent.

(c) We use the Comparison Test here. Note that

$$
\ln(x_n) = -\ln n \ln(\ln n) \le -2\ln n, \quad \forall n \ge 2000.
$$

(Here we want $\ln(\ln n) \geq 2$. i.e., $n \geq e^{e^2} \approx 1618.17$.) Hence we have

$$
0 \le x_n \le \frac{1}{n^2}, \quad \forall n \ge 2000.
$$

Since $\sum 1/n^2$ is convergent, the series is also **convergent**.

(d) We use the **Integral Test** here. Consider the function $f : [2, \infty) \to \mathbb{R}$ defined by

$$
f(x) = \frac{1}{x \ln x}.
$$

Then f is a continuous, decreasing, positive function with $f(n) = x_n$. Also, the improper integral (if it exists) is given by

$$
\int_2^{\infty} \frac{1}{x \ln x} dx = \int_2^{\infty} \frac{1}{\ln x} d(\ln x) = \ln(\ln x) \Big|_2^{\infty}
$$

.

We can see that the improper integral does not exist, therefore the series is **divergent**.

Prepared by Ernest Fan 4

(e) We use the Ratio Test here. Note that

$$
\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!e^{-(n+1)^2}}{n!e^{-n^2}} = \frac{(n+1)!}{n!} \cdot \frac{e^{n^2}}{e^{(n+1)^2}} = \frac{n+1}{e^{2n+1}}.
$$

Apply L'Hospital's Rule, we have

$$
\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = \lim_{n \to \infty} \frac{1}{2e^{2n+1}} = 0 < 1.
$$

Hence the series is convergent.

(f) We use the n -th Term Test here. Note that

$$
\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} \frac{(-1)^{2n} \cdot 2n}{2n + 1} = 1 \neq 0.
$$

Since we have found a subsequence of (x_n) that does not converge to 0, (x_n) must not converge to 0. Hence the series is divergent.