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Absolute Convergence and Conditional Convergence

We have discussed the notation of the convergence of series of numbers. Let’s talk about a
stronger version of convergence.

Definition (c.f. Definition 9.1.1). Let (xn) be a sequence of real numbers. The series∑
xn is said to converge absolutely if the series

∑
|xn| is convergent. It is said to converge

conditionally if it is convergent but not absolutely convergent.

The following theorem is a quick deduction from the Cauchy Criterion of Series and
the triangle inequality.

Theorem (c.f. Theorem 9.1.2). A series must be convergent if it is absolutely convergent.

Example 1. Observe the following examples.

• Every convergent series with non-negative terms is absolutely convergent. For example,

∞∑
n=1

1

n2
,

∞∑
n=1

1

2n
and

∞∑
n=1

| cosn|
n2

.

• The series
∑ cosn

n2
is absolutely convergent from the discussion in the previous tutorial.

• The (alternating harmonic) series
∑

(−1)n+1/n is conditionally convergent. Since the
harmonic series is divergent, it suffices to show that this series is convergent. Note that

s2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

2n− 1
− 1

2n

)
s2n+1 = 1−

(
1

2
− 1

3

)
−
(

1

4
− 1

5

)
− · · · −

(
1

2n
− 1

2n+ 1

)
Thus (s2n) is an increasing sequence and (s2n+1) is a decreasing sequence with

0 < s2n < s2n+1 < 1.

By Monotone Convergence Theorem, both subsequences are convergent. More-
over, they converge to the same value α because

s2n+1 = s2n +
1

2n+ 1
.

Then for any ε > 0, there exist N1, N2 ∈ N such that

|s2n − α| < ε, ∀n ≥ N1 and |s2n+1 − α| < ε, ∀n ≥ N2. (1)

Take N = max{2N1, 2N2 + 1}. Then whenever n ≥ N , by (1), we have

n

2
≥ N

2
≥ N1 =⇒ |sn − α| = |s2(n

2
) − α| < ε if n is even;

n− 1

2
≥ N − 1

2
≥ N2 =⇒ |sn − α| = |s2(n−1

2
)+1 − α| < ε if n is odd.

Hence |sn−α| < ε no matter n is even or odd. It follows that the alternating harmonic
series also converge to α.
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Rearrangement Theorem (c.f. 9.1.5). Let
∑
xn be an absolutely convergent series. Then

for any bijection σ : N→ N,
∑
xσ(n) is also convergent and

∞∑
n=1

xσ(n) =
∞∑
n=1

xn.

Remark. This convergence property is called unconditional convergence. The rear-
rangement theorem says that unconditional convergence is implied by absolute convergence.

Tests of Absolute Convergence

Last time, we have discussed some test for convergence. Let’s recall the Comparison Test
and see some more tests of absolute convergence.

Comparison Test (c.f. 3.7.7). Let (xn) and (yn) be sequences of real numbers. Suppose
there exists K ∈ N such that

0 ≤ xn ≤ yn, ∀n ≥ K.

Then

(a) the convergence of
∑
yn implies the convergence of

∑
xn.

(b) the divergence of
∑
xn implies the divergence of

∑
yn.

Root Test (c.f. 9.2.2). Let (xn) be a sequence real numbers.

(a) If there exists r < 1 and K ∈ N such that

|xn|1/n ≤ r, ∀n ≥ K,

then
∑
xn is absolutely convergent.

(b) If there exists K ∈ N such that

|xn|1/n ≥ 1, ∀n ≥ K,

then
∑
xn is divergent.

Ratio Test (c.f. 9.2.4). Let (xn) be a sequence of non-zero real numbers.

(a) If there exists r < 1 and K ∈ N such that∣∣∣∣xn+1

xn

∣∣∣∣ ≤ r, ∀n ≥ K,

then
∑
xn is absolutely convergent.

(b) If there exists K ∈ N such that ∣∣∣∣xn+1

xn

∣∣∣∣ ≥ 1, ∀n ≥ K,

then
∑
xn is divergent.
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Integral Test (c.f. 9.2.6). Let f : [1,∞)→ R be a continuous, decreasing, positive function.
Then

∑
f(n) is convergent if and only if the improper integral∫ ∞

1

f(x)dx

exists. In this case, the limit is given by

∞∑
n=1

f(n) =

∫ ∞
1

f(x)dx.

Example 2 (c.f. Section 9.2, Ex.9). Let 0 < a < 1 and consider the series

a2 + a+ a4 + a3 + · · ·+ a2n + a2n−1 + · · · .

Show that the Root Test applies but the Ratio Test does not apply.

Remark. Notice that the series is a rearrangement of the absolutely convergent geometric
series so it must be convergent.

Solution. To apply the Root Test, we need to estimate |xn|1/n for large n’s.
For even n = 2k,

|xn|1/n = |x2k|1/2k = |a2k−1|1/2k = a1−1/2k = a1−1/n.

For odd n = 2k + 1,

|xn|1/n = |x2k+1|1/(2k+1) = |a2k+2|1/(2k+1) = a1+1/(2k+1) = a1+1/n.

In both cases, we have |xn|1/n = a1±1/n. Hence

lim
n→∞

|xn|1/n = lim
n→∞

a1±1/n = a < 1.

Therefore we see that the Root Test applies.

To apply the Ratio Test, we need to estimate

∣∣∣∣xn+1

xn

∣∣∣∣ for large n’s.

For even n = 2k, ∣∣∣∣xn+1

xn

∣∣∣∣ =

∣∣∣∣x2k+1

x2k

∣∣∣∣ =
a2k+2

a2k−1
= a3 < 1.

For odd n = 2k + 1, ∣∣∣∣xn+1

xn

∣∣∣∣ =

∣∣∣∣x2k+2

x2k+1

∣∣∣∣ =
a2k+1

a2k+2
=

1

a
≥ 1.

Hence the sequence (|xn+1/xn|) is alternating between a3 and a−1, which lie in opposite sides
of 1. Therefore we see that the Ratio Test does not apply.
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Example 3 (c.f. Section 9.2, Ex.2, 3, 4 & 7). Determine the convergence of the following
series.

(a)
∞∑
n=1

nne−n

(b)
∞∑
n=1

n!

nn

(c)
∞∑
n=2

(lnn)− lnn

(d)
∞∑
n=2

(n lnn)−1

(e)
∞∑
n=1

n!e−n
2

(f)
∞∑
n=1

(−1)nn

n+ 1

Solution. Let’s check the convergence of the series using suitable tests.

(a) We use the Root Test here. Note that

|xn|1/n = |nne−n|1/n =
n

e
≥ 1, ∀n ≥ 3.

Hence the series is divergent.

(b) We use the Ratio Test here. Note that∣∣∣∣xn+1

xn

∣∣∣∣ =
(n+ 1)!/(n+ 1)n+1

n!/nn
=

(n+ 1)!

n!
· nn

(n+ 1)n+1
=

nn

(n+ 1)n
.

Therefore we have

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

nn

(n+ 1)n
= lim

n→∞

(
1 +

1

n

)−n
=

1

e
< 1.

Hence the series is convergent.

(c) We use the Comparison Test here. Note that

ln(xn) = − lnn ln(lnn) ≤ −2 lnn, ∀n ≥ 2000.

(Here we want ln(lnn) ≥ 2. i.e., n ≥ ee
2 ≈ 1618.17.) Hence we have

0 ≤ xn ≤
1

n2
, ∀n ≥ 2000.

Since
∑

1/n2 is convergent, the series is also convergent.

(d) We use the Integral Test here. Consider the function f : [2,∞)→ R defined by

f(x) =
1

x lnx
.

Then f is a continuous, decreasing, positive function with f(n) = xn. Also, the
improper integral (if it exists) is given by∫ ∞

2

1

x lnx
dx =

∫ ∞
2

1

lnx
d(lnx) = ln(ln x)

∣∣∣∞
2
.

We can see that the improper integral does not exist, therefore the series is divergent.
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(e) We use the Ratio Test here. Note that∣∣∣∣xn+1

xn

∣∣∣∣ =
(n+ 1)!e−(n+1)2

n!e−n2 =
(n+ 1)!

n!
· en

2

e(n+1)2
=
n+ 1

e2n+1
.

Apply L’Hospital’s Rule, we have

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

n+ 1

e2n+1
= lim

n→∞

1

2e2n+1
= 0 < 1.

Hence the series is convergent.

(f) We use the n-th Term Test here. Note that

lim
n→∞

x2n = lim
n→∞

(−1)2n · 2n
2n+ 1

= 1 6= 0.

Since we have found a subsequence of (xn) that does not converge to 0, (xn) must not
converge to 0. Hence the series is divergent.
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