
MATH2060B: Analysis II: Revision Exercise (2020)

1. Let f be a differentiable function on (a, b). Show the followings:

(i) If f is unbounded, then so is f ′. Does the converse hold?

Proof: Assume that f ′ is bounded. Fix c ∈ (a, b). The Mean Valued Theorem

implies that for any x ∈ (a, b), there exists an element ξ between x and c such that

f(x) = f(c) + f
′
(ξ)(x− c). This shows that f(x) is bounded if f ′ is bounded.

The converse does not hold.

Example, consider f(x) = sin
1

x
for x ∈ (0, 1).

(ii) If f ′ is bounded, then f 2 is uniformly continuous on (a, b).

Proof: As f ′ is bounded, part (i) implies that f is bounded. Then the assertion

is obtained by the Mean Value Theorem and the following equality immediately

|f 2(x)− f 2(y)| = |f(x)− f(y)||f(x) + f(y)|

for all x, y ∈ (a, b).

2. Let f(x) := sgn(sin 1
x
) for x ∈ [−1, 1] \ {0} and f(0) = 0. Is f a Riemann integrable

function?

Proof: Notice that f is discontinuous at the points ± 1
nπ

and x = 0. The result can

shown by the following statement at once:

”If a function F : [−1, 1] → R is only discontinuous on the set {± 1
nπ
} ∪ {0}, then F is

integrable on [−1, 1].”

3. Let f ∈ R[a, b]. Show the followings.

(i) If f is continuous at some point c ∈ [a, b] and
∫ b
a
f 2 = 0, then f(c) = 0.

(ii) For all ε > 0 there is a subinterval [c, d] of [a, b] such that the oscillation ω[c, d] < ε

of f over [c, d], where ω[c, d] := {|f(x′)− f(x′′)| : x′, x′′ ∈ [c, d]}.
Proof (ii): Suppose that the part (ii) is not true. Hence, there is ε > 0 such that

ω[c, d] ≥ ε for any subinterval [c, d]. One the other hand, since f ∈ R[a, b], there is

a partition P on [a, b] such that
∑
ωi(f, P )4xi < b−a

2
ε. Then by the hypothesis,

we see that

0 < ε(b− a) ≤
∑

ωi(f, P )4xi <
b− a

2
ε.

It leads to a contradiction.



4. Find lim
n→∞

∫ 1

0

xn

1 + x
dx.

Proof: Let ε > 0. Notice that for all a ∈ (0, 10, we have xn

1+x
≤ 1

1+x
for all x ∈ [0, a] and

for all n ∈ N. Therefore, for all ε > 0, we can choose a ∈ (0, 1) such that
∫ 1

a
xn

1+x
dx ≤

(1 − a) < ε for all n. On the other hand, we have
∫ a
0

xn

1+x
dx ≤ an ln(1 + a) for all n.

Thus, there is N ∈ N such that∫ 1

0

xn

1 + x
dx ≤ (

∫ a

0

+

∫ 1

a

)
xn

1 + x
dx < 2ε

for all n ≥ N .

5. Let fn(x) =
x

1 + n2x2
for x ∈ R. Do the sequences (fn) and (f

′
n) converge uniformly on

R?

Claim 1: (fn) converges uniformly on R. Notice that |fn(x)| ≤ 1
2n

for all x ∈ R and for

all n ∈ N. Therefore the sequence (fn) converges uniformly to 0 on R.

Claim 2: (f
′
n) does not converge uniformly on R. In fact, we see that f

′
n(x) = 1−n2x2

1+n2x2
.

On the other hand, we have lim f
′
n(x) = 0 for x 6= 0 and lim f

′
n(0) = 1. Thus the

pointwise limit function of f
′
n is discontinuous at x 6= 0. Therefore, (f

′
n) does not

converge uniformly on R since f
′
n is continuous on R for each n.

6. Let fn(x) =
n∑
k=1

(−1)k+1 sin kx

k
. Does (fn) converge uniformly on R? (Remark: this

example was due to Cauchy which was restated in Abel’s note).

7. Determine the following series whether converges uniformly on its domain.

(i)
∞∑
n=1

(−1)n(1− x)xn, for x ∈ [0, 1].

Proof: Yes. Reason: Note that the convergence radius of the series
∑

(−1)nxn is

1 and is convergent at x = 1. Then by the Abel Theorem (see the note), the series∑
(−1)nxn is uniformly convergent on [0, 1]. Thus, the series

∑∞
n=1(−1)n(1−x)xn =

(1− x)
∑∞

n=1(−1)nxn converges uniformly converges on [0, 1].

(ii)
∞∑
n=1

(1− x)xn, for x ∈ [0, 1].

Proof: No. Reason: Let sn(x) be the n-th partial sum of the series. Then for each

positive integer N , we see that s2N+3(x) − sN(x) = xN+1 − x2N+2. In this case,

we let xN = (1/2)1/(N+1) ∈ [0, 1]. Then s2N+3(xN) − sN(xN) = 1/4. Then by the

Cauchy Theorem, the series does not converges uniformly on [0, 1].

(iii)
∞∑
n=1

x

1 + n4x2
, for x ∈ [0,∞).

Proof Yes. Note that 0 ≤ x
1+n4x2

≤ 1/(2n2) for all x ≥ 0 and for all n. Then the

result is obtained by the M -test.



8. Find the convergence domain of the series
∞∑
n=1

(−)n

2n− 1
(
1− x
1 + x

)n.

Proof: Answer: The convergence domain is [0,∞). Reason: Put y := (−)n
2n−1(1−x

1+x
)n.

Note that the convergence domain of the power series of
∑ (−)n

2n−1y
n is (−1, 1]. Note that

−1 < y ≤ 1 if and only if x ≥ 1. The proof is finished.


