
MATH2060B Mathematical Analysis II Home Test 2 Suggested Solution

Question 1. Let

f(x) =
∞∑
k=1

(
x+

1

k

)k

.

(a) Find the convergence domain D of f . i.e., D = {x ∈ R : f(x) is convergent}.

(b) Does the function f converge uniformly on its domain?

(c) Is f a C1-function on its domain?

(d) Show that the domain of f is equal to the domain of its derivatives f ′.

Solution. .

(a) The domain of convergence is given by D = (−1, 1). For each k ∈ N, put

uk(x) =

(
x+

1

k

)k

and hence f(x) =
∞∑
k=1

uk(x).

Notice that for each x ∈ R,

lim
k→∞
|uk(x)|1/k = lim

k→∞

∣∣∣∣∣
(
x+

1

k

)k
∣∣∣∣∣
1/k

= lim
k→∞

∣∣∣∣x+
1

k

∣∣∣∣ = |x|.

Hence by the Root Test, f(x) is (absolutely) convergent if |x| < 1 and is divergent if
|x| > 1. It remains to consider the cases x = ±1.

If x = 1, note that each term of the series is bounded below by 1:

uk(1) =

(
1 +

1

k

)k

≥ 1 > 0, ∀k ∈ N.

Hence f(1) is divergent by the Comparison Test.

If x = −1, note that

uk(−1) =

(
−1 +

1

k

)k

= (−1)k
(

1− 1

k

)k

, ∀k ∈ N.

By considering the odd subsequence and even subsequence of (uk(−1)), we have

lim
k→∞

u2k(−1) =
1

e
and lim

k→∞
u2k+1(−1) = −1

e
.

Hence uk(−1) is divergent. In particular, it does not converge to 0. It follows that
f(−1) is divergent by the n-th Term Test.

Remark. It is not enough to show that f(x) is convergent for x ∈ (−1, 1). This only
implies that (−1, 1) ⊆ D. We should also show that f(x) is divergent for x /∈ (−1, 1)
to argue for D = (−1, 1).
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(b) No, f does not converge uniformly on its domain. By Cauchy Criterion for Series,
it suffices to show that there exists an ε > 0 such that for all K ∈ N, there exist k ≥ K,
p ∈ N and x ∈ (−1, 1) such that

|uk+1(x) + uk+2(x) + · · ·+ uk+p(x)| ≥ ε.

Fix any K ∈ N, we can take

k = K, p = 1, and x =
K

K + 1
.

Then k ≥ K, p ∈ N and x ∈ (−1, 1). Also,

|uk+1(x)| =

∣∣∣∣∣
(
x+

1

k + 1

)k+1
∣∣∣∣∣ =

∣∣∣∣∣
(

K

K + 1
+

1

K + 1

)K+1
∣∣∣∣∣ = 1K+1 ≥ 1.

(c) Yes, f is a C1-function. Consider the function g defined by

g(x) =
∞∑
k=1

u′k(x) =
∞∑
k=1

k

(
x+

1

k

)k−1

.

It suffices to show that g is uniformly convergent on [−η, η] whenever 0 < η < 1. Let
η < r < 1. Then whenever x ∈ [−η, η] and k sufficiently large, we have

|u′k(x)| ≤ k

(
|x|+ 1

k

)k−1

≤ k

(
η +

1

k

)k−1

≤ k · rk−1.

Notice that
∑
krk−1 is convergent by the Ratio Test. It follows by the Weierstrass

M-Test that g(x) is uniformly convergent on [−η, η].

For any x ∈ (−1, 1), pick η such that |x| < η < 1. Since g(x) is uniformly convergent
on [−η, η] and x ∈ [−η, η], we have

f ′(x) = g(x) =
∞∑
k=1

u′k(x) =
∞∑
k=1

k

(
x+

1

k

)k−1

, ∀x ∈ (−1, 1).

Note that each u′k is continuous at x, so f ′ = g is also continuous at x. Since x ∈ (−1, 1)
is arbitrary, it follows that f is a C1-function.

(d) As shown in (c), the domain of f and f ′ are both (−1, 1).
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Question 2. .

(a) Show that the following statements are equivalent without using Cauchy criterion:

(i) Every Cauchy sequence in R is convergent.

(ii) Every absolutely convergent series in R is convergent.

(a) Give an example to show that statement (ii) above does not hold if R is replaced by
the field of rational numbers Q.

Solution. .

(a) (i ⇒ ii) Let
∑
xn be an absolutely convergent series in R. For each n ∈ N, denote

sn =
n∑

k=1

xk = x1 + x2 + · · ·+ xn

be the partial sums. Then for n, p ∈ N,

|sn+p − sn| = |xn+1 + xn+2 + · · ·+ xn+p| ≤
n+p∑

k=n+1

|xk|.

Since
∑
|xn| is convergent, for each ε > 0, there exists N ∈ N such that

n+p∑
k=n+1

|xk| < ε, ∀n ≥ N, ∀p ∈ N.

It follows that (sn) is a Cauchy sequence in R, and hence converges to some x ∈ R by
assumption (i). Therefore the absolutely convergent series

∑
xn is convergent.

(ii ⇒ i) Let (xn) be a Cauchy sequence in R. It suffices to show that (xn) admits a
convergent subsequence, which is constructed in the following way:

For k = 1, since (xn) is a Cauchy sequence, there exists n1 ∈ N such that

|xm − xn1| <
1

2
, ∀m ≥ n1.

For k = 2, since (xn) is a Cauchy sequence, there exists n2 > n1 such that

|xm − xn2 | <
1

22
, ∀m ≥ n2.

Repeat the constructions for k = 3, 4, ..., we defined a subsequence (xnk
) such that

|xnk+1
− xnk

| < 1

2k
∀k ∈ N.

Let yk = xnk+1
− xnk

. Note that for each K ∈ N,

K∑
k=1

|yk| =
K∑
k=1

|xnk+1
− xnk

| <
K∑
k=1

1

2k
≤

∞∑
n=1

1

2k
= 1.
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i.e.,
∑
yk is absolutely convergent, and hence converges to some y ∈ R by assumption

(ii). Now, consider the partial sums of
∑
yk, we have

K∑
k=1

yk = (xn2 − xn1) + (xn3 − xn2) + · · ·+ (xnK+1
− xnK

) = xnK+1
− xn1 .

Taking limit as K →∞, we see that (xnK
) is convergent:

lim
K→∞

xnK
= lim

K→∞
xnK+1

= xn1 + lim
K→∞

K∑
k=1

yk = xn1 + y

(b) (Method I) Fix an irrational number, say
√

2, and consider its decimal representation:
√

2 = 1.414121356....

For each n ∈ N, define the sequence (un) in Q by truncating the first n decimal places:

u1 = 1.4, u2 = 1.41, u3 = 1.414, ...

If we define x1 = u1 and xn+1 = un+1 − un for n ∈ N, then
∑
xn is a series in Q that

satisfies
∞∑
n=1

|xn| <∞ and
∞∑
n=1

xn =
√

2.

(Method II) Fix an irrational number α ∈ (−1, 1). We construct the sequence of
signs (εn) inductively in the following way:

For n = 1, let α1 = α. Notice that α1 is an irrational number because α is irrational.
Note that we also have 0 < |a1| < 1. Define ε1 to be the same sign as α1. i.e.,

ε1 =

{
1, if α1 > 0,

−1, if α1 < 0.

For n = 2, let α2 = α1 − ε1/2. Notice that α2 is an irrational number because α1 is
irrational. Note that we also have 0 < |a2| < 1

2
. Define ε2 to be the same sign as α2.

Repeat the constructions for n = 3, 4, ..., we defined a sequence (αn) and a sequence
of signs (εn) such that

αn+1 = αn −
εn
2n

= α−
n∑

k=1

εk
2k

and 0 < |αn| <
1

2n−1 , ∀n ∈ N.

It follows that the series
∑
εn2−n is an absolutely convergent series in Q:
∞∑
n=1

∣∣∣εn
2n

∣∣∣ =
∞∑
n=1

1

2n
= 1 <∞

However, it is not a convergent series in Q because∣∣∣∣∣α−
n∑

k=1

εk
2k

∣∣∣∣∣ = |αn+1| <
1

2n
→ 0, as n→∞.

i.e.,
∑
εn2−n converges to α ∈ R \Q.
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