THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 9: Section 9.1: 7, 10, 13

- 7. (a) If $\sum a_n$ is absolutely convergent and (b_n) is a bounded sequence, show that $\sum a_n b_n$ is absolutely convergent.
	- (b) Give an example to show that if the convergence of $\sum a_n$ is conditional and (b_n) is a bounded sequence, then $\sum a_n b_n$ may diverge.

(3 marks)

Solution.

(a) Since $\sum a_n$ is absolutely convergent, we have \sum^{∞} $n=1$ $|a_n| < \infty$. Let $M > 0$ such that $|b_n| \leq M$ for all $n \in \mathbb{N}$. Then,

$$
\sum_{n=1}^{\infty} |a_n b_n| \le \sum_{n=1}^{\infty} M |a_n| = M \left(\sum_{n=1}^{\infty} |a_n| \right) < \infty.
$$

Therefore, $\sum a_n b_n$ is absolutely convergent.

(b) Let $a_n = (-1)^n/n$ and $b_n = (-1)^n$. By **9.3.2 Alternating Series Test**, we see that $\sum_{n=1}^{\infty}$ $n=1$ a_n is convergent. On the other hand,

$$
\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{1}{n} = \infty.
$$

The alternating series test states that if (a_n) is a sequence of positive numbers, which is monotone decreasing with $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=0}^{\infty} a_n = 0$ $n=1$ $(-1)^n a_n$ exists. To see that, if we put $S_n = (-1)a_1 + a_2 + \cdots + (-1)^n a_n$ the partial sum, then $(S_{2n-1})_{n\in\mathbb{N}}$ is an increasing sequence bounded above by 0, (why?) and (S_{2n}) is a decreasing sequence bounded below by $-a_1$ (why?). Assume that they converge to the limits l_1 , l_2 respectively. Then,

$$
|l_2 - l_1| = \lim_{n \to \infty} |S_{2n} - S_{2n-1}| = \lim_{n \to \infty} |a_{2n}| = 0
$$

Some routine argument shows that $\lim_{n\to\infty} S_n = l_1$, i.e. $\sum_{n=1}^{\infty} (-1)^n a_n$ exists. One may show that $\sum_{n=1}^{\infty} 1/n = \infty$ by integral test. $(9.2.\overline{6})$

10. Give an example of a divergent series $\sum a_n$ with (a_n) decreasing and such that $\lim(na_n) = 0.$ (3 marks)

Solution. Let $a_n = \frac{1}{(n+1)\log(n+1)}$ for $n \in \mathbb{N}$. This is to avoid the case $\log 1 = 0$. It is easy to see that (a_n) is a decreasing sequence with $\lim_{n\to\infty} na_n = 0$. To show that the infinite sum is divergent, we may appy the integral test, by termwise comparison, we have

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)\log(n+1)} \ge \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{(x+1)\log(x+1)} dx
$$

=
$$
\int_{1}^{\infty} \frac{1}{(x+1)\log(x+1)} dx
$$

=
$$
\int_{1}^{\infty} \frac{d(\log(x+1))}{\log(x+1)}
$$

=
$$
\log(\log(x+1))|_{x=1}^{\infty} = \infty
$$

13. (a) Does the series
$$
\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}} \right)
$$
 converge?
(b) Does the series
$$
\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{n} \right)
$$
 converge?

(2 marks each)

Solution.

(a) No. Notice that

$$
\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}} = \frac{1}{\sqrt{n}(\sqrt{n+1} + \sqrt{n})}
$$

$$
\geq \frac{1}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n+1})}
$$

$$
= \frac{1}{2(n+1)}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}} \right) \ge \sum_{n=1}^{\infty} \frac{1}{2(n+1)} = \infty.
$$

(b) Yes. Notice that

$$
\frac{\sqrt{n+1} - \sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1} + \sqrt{n})}
$$

$$
\leq \frac{1}{n(\sqrt{n} + \sqrt{n})}
$$

$$
= \frac{1}{2n\sqrt{n}}
$$

We may conclude that

$$
\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{n} \right) \le \sum_{n=1}^{\infty} \frac{1}{2n\sqrt{n}} < \infty.
$$

using integral test.