THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 8: Section 8.2: 6, 9, 12

6. Let $f_n(x) := 1/(1+x)^n$ for $x \in [0,1]$. Find the pointwise limit f of the sequence (f_n) on [0,1]. Does (f_n) converge uniformly to f on [0,1]? (3 marks)

Solution. For x = 0, $\lim_{n \to \infty} f_n(0) = 1$. For $x \in (0, 1]$, we have 1 + x > 1 and hence, $\lim_{n \to \infty} f_n(x) = 0$. Therefore, the limit function f is

$$f(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } x \in (0, 1]. \end{cases}$$

The sequence (f_n) does not converge uniformly to f on [0,1], because f_n are continuous for all n and the limit function f is not continuous.

9. Let $f_n(x) := x^n/n$ for $x \in [0,1]$. Show that the sequence (f_n) of differentiable functions converges uniformly to a differentiable function f on [0,1], and that the sequence (f'_n) converges on [0,1] to a function g, but that $g(1) \neq f'(1)$. (4 marks)

Solution. For each $x \in [0, 1]$, we have

$$|f_n(x)| = \left|\frac{x^n}{n}\right| \le \frac{1}{n} \to 0 \text{ as } n \to \infty.$$

Therefore, f_n converges uniformly to $f \equiv 0$ on [0, 1]. On the other hand, it is easy to see that the pointwise limit of the sequence (f'_n) , where $f'_n(x) = x^{n-1}$, is

$$g(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ 1 & \text{if } x = 1. \end{cases}$$

Therefore, we have $g(1) = 1 \neq 0 = f'(1)$.

12. Show that $\lim_{x \to 0} \int_{1}^{2} e^{-nx^{2}} dx = 0.$

Solution. We claim that the sequence (e^{-nx^2}) of functions converges uniformly to zero function on [1, 2]. After showing this, we may apply **8.2.4 Theorem** on p.251 to conclude that $\lim_{n \to \infty} \int_{1}^{2} e^{-nx^2} dx = \int_{1}^{2} \lim_{n \to \infty} e^{-nx^2} dx = 0$. Note that on the interval [1, 2]

Note that on the interval [1, 2],

$$|e^{-nx^2}| \le e^{-n} \to 0 \quad \text{as } n \to \infty.$$

Therefore, the claim is shown.

(3 marks)