THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 6: Section 7.2: 16, 17

16. If f is continuous on [a, b], a < b, show that there exists $c \in [a, b]$ such that we have $\int_{a}^{b} f = f(c)(b-a)$. This result is sometimes called the *Mean Value Theorem for Integrals.* (3 marks)

Solution.

Let $F(x) = \int_a^x f$ for $x \in [a, b]$. The function F is continuous on [a, b] and by Fundamental theorem of Calculus (Second form), F is differentiable on (a, b) with F'(x) = f(x). By Mean Value Theorem, there is some $c \in (a, b)$ such that

$$F(b) - F(a) = F'(c)(b - a)$$

This completes the proof.

17. If f and g are continuous on [a, b] and g(x) > 0 for all $x \in [a, b]$, show that there exists $c \in [a, b]$ such that $\int_a^b fg = f(c) \int_a^b g$. Show that this conclusion fails if we do not have g(x) > 0. (Note that this result is an extension of the preceding exercise.) (7 marks)

Solution. Since g is continuous on [a, b], there is some $x_0 \in [a, b]$ such that $g(x) \ge g(x_0)$ for every $x \in [a, b]$. By assumption, $g(x_0) > 0$, hence $\int_a^b g \ge g(x_0)(b-a) > 0$. Let $M := \sup\{f(x) : x \in [a, b]\}$ and $m := \inf\{f(x) : x \in [a, b]\}$. For each $x \in [a, b]$, we have

$$mg(x) \le f(x)g(x) \le Mg(x),$$

because g(x) > 0. Integrating from a to b gives

$$m\int_{a}^{b}g \leq \int_{a}^{b}fg \leq M\int_{a}^{b}g.$$

Divided by $\int_{a}^{b} g(>0)$, we see that $\frac{\int_{a}^{b} fg}{\int_{a}^{b} g} \in [m, M]$. Intermediate Value Theorem tells us that $\frac{\int_{a}^{b} fg}{\int_{a}^{b} g} = f(c)$ for some $c \in [a, b]$. This shows the first part. (4 marks) To see that the conclusion fails if we do not have g(x) > 0, let g(x) = f(x) = xon [-1, 1]. Then, $\int_{-1}^{1} fg = \int_{-1}^{1} x^{2} = \frac{2}{3}$, but $\int_{-1}^{1} g = 0$. Therefore, we cannot have $\int_{-1}^{1} fg = f(c) \int_{-1}^{1} g$ for any $c \in [-1, 1]$. (3 marks)