THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 6: Section 7.2: 16, 17

16. If f is continuous on [a, b], $a < b$, show that there exists $c \in [a, b]$ such that we have $\int_a^b f = f(c)(b - a)$. This result is sometimes called the *Mean Value Theorem for* Integrals. (3 marks)

Solution.

Let $F(x) = \int_a^x f$ for $x \in [a, b]$. The function F is continuous on $[a, b]$ and by Fundamental theorem of Calculus (Second form), F is differentiable on (a, b) with $F'(x) = f(x)$. By Mean Value Theorem, there is some $c \in (a, b)$ such that

$$
F(b) - F(a) = F'(c)(b - a)
$$

This completes the proof.

17. If f and g are continuous on [a, b] and $g(x) > 0$ for all $x \in [a, b]$, show that there exists $c \in [a, b]$ such that $\int_a^b fg = f(c) \int_a^b g$. Show that this conclusion fails if we do not have $g(x) > 0$. (Note that this result is an extension of the preceding exercise.) (7 marks)

Solution. Since g is continuous on [a, b], there is some $x_0 \in [a, b]$ such that $g(x) \geq$ $g(x_0)$ for every $x \in [a, b]$. By assumption, $g(x_0) > 0$, hence $\int_a^b g \ge g(x_0)(b - a) > 0$. Let $M := \sup\{f(x) : x \in [a, b]\}\$ and $m := \inf\{f(x) : x \in [a, b]\}.$ For each $x \in [a, b],$ we have

$$
mg(x) \le f(x)g(x) \le Mg(x),
$$

because $g(x) > 0$. Integrating from a to b gives

$$
m\int_a^b g \le \int_a^b fg \le M\int_a^b g.
$$

Divided by $\int_a^b g (> 0)$, we see that $\frac{\int_a^b fg}{\int_a^b g}$ $\frac{d_a J g}{\int_a^b g} \in [m, M]$. Intermediate Value Theorem tells us that $\frac{\int_a^b fg}{\int_a^b}$ $\frac{a_a J g}{\int_a^b g} = f(c)$ for some $c \in [a, b]$. This shows the first part. (4 marks) To see that the conclusion fails if we do not have $g(x) > 0$, let $g(x) = f(x) = x$ on [-1, 1]. Then, $\int_{-1}^{1} fg = \int_{-1}^{1} x^2 = \frac{2}{3}$ $\frac{2}{3}$, but $\int_{-1}^{1} g = 0$. Therefore, we cannot have $\int_{-1}^{1} fg = f(c) \int_{-1}^{1} g$ for any $c \in [-1, 1]$. (3 marks)