THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 5: Section 7.2: 8, 9, 12

8. Suppose that f is continuous on [a, b], that $f(x) \ge 0$ for all $x \in [a, b]$ and that $\int_a^b f = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. (4 marks)

Solution. Suppose f(c) > 0 for some $c \in (a, b)$. By continuity of f, there is some $\delta > 0$ such that $(c - \delta, c + \delta) \subseteq (a, b)$ and $f(x) > \frac{f(c)}{2}$ for every $x \in (c - \delta, c + \delta)$. Therefore,

$$\int_{c-\delta}^{c+\delta} f \ge \frac{f(c)}{2}(2\delta) > 0.$$

Since $f \ge 0$, we have $\int_a^b f \ge \int_{c-\delta}^{c+\delta} f > 0$, which is a contradiction. This shows that $f|_{(a,b)} \equiv 0$, and by continuity of $f, f \equiv 0$ on [a, b].

9. Show that the continuity hypothesis in the preceding exercise cannot be dropped. (2 marks)

Solution. Consider the function $f : [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } 0 < x \le 1. \end{cases}$$

Clearly, $f \ge 0$ and $\int_0^1 f = 0$, but $f \not\equiv 0$ and f is discontinuous at 0.

12. Show that $g(x) := \sin(1/x)$ for $x \in (0, 1]$ and g(0) := 0 belongs to $\mathcal{R}[0, 1]$. (4 marks)

Solution. Let $\epsilon > 0$. It suffices to propose a partition \mathcal{P} on [0, 1] so that

$$\mathcal{U}(g,\mathcal{P}) - \mathcal{L}(g,\mathcal{P}) < \epsilon.$$

Let $\eta > 0$. Since $g|_{[\eta,1]}$ is continuous, g is uniform continuous on $[\eta, 1]$. There is some $\delta > 0$ such that

$$|g(x) - g(y)| < \epsilon/2$$
 for $x, y \in [\eta, 1]$ with $|x - y| < \delta$.

Let \mathcal{P}_1 be a partition on $[\eta, 1]$ with $||\mathcal{P}_1|| < \delta$, and let $\mathcal{P} = \{0\} \cup \mathcal{P}_1$. We may write $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$, where

$$0 = x_0 < x_1 = \eta < x_2 < \ldots < x_n = 1.$$

We denote $I_i = [x_{i-1}, x_i]$. Notice that

$$\mathcal{U}(g,\mathcal{P}) - \mathcal{L}(g,\mathcal{P}) = \sum_{i=1}^{n} \sup_{x,y \in I_i} |g(x) - g(y)| \cdot |I_i|$$
$$= \sup_{0 \le x, y \le \eta} |g(x) - g(y)| \cdot \eta + \sum_{i=2}^{n} \sup_{x,y \in I_i} |g(x) - g(y)| \cdot |I_i|$$

The function |g| is bounded by 1, so $\sup_{0 \le x, y \le \eta} |g(x) - g(y)| \le 2$. Uniform continuity of g on $[\eta, 1]$ together with $|I_i| < \delta$, yield that $\sup_{x,y \in I_i} |g(x) - g(y)| \le \epsilon/2$ for $i \ge 2$. Therefore,

$$\mathcal{U}(g,\mathcal{P}) - \mathcal{L}(g,\mathcal{P}) \le 2\eta + \frac{\epsilon}{2}(1-\eta) \le 2\eta + \frac{\epsilon}{2}$$

If we choose $\eta < \epsilon/4$ at the beginning, we will obtain a partition \mathcal{P} on [0, 1] so that

$$\mathcal{U}(g,\mathcal{P}) - \mathcal{L}(g,\mathcal{P}) < \epsilon.$$

This completes the proof.