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4. Show that if x > 0, then 1 + %x — %1:2 <VJVi+zx<1l+ %[E (3 marks)
Solution. Let f(x) =+/1+ z. Then,
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By Taylor’s Theorem, there is ¢; € (0, x) such that
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Similarly, there is ¢y € (0, ) such that
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Equation (1) gives v/1+ z < 141z, while Equation (2) gives 1+ 32— 2% < V1 + a.
This completes the proof.

9. If g(x) := sinzx, show that the remainder term in Taylor’s Theorem converges to
zero as n — oo for each fixed zy and z. (3 marks)

Solution. Recall that the remainder term for the nth Taylor’s polynomial is given

by
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Notice that ¢"*Y(z) = sinx, —sinz,cosx or —cosz. Hence, [t (c,)| < 1.

Therefore, we have

R, (x) = )n+1

(x — xo for some ¢,, between x and .

|l‘—[L’0|n+1
(n+1)!

|z — 2]

| Rn(2)] <

_xal? . . a . .
Let a, = 22" Since lim —*! = lim = 0 < 1, ratio test tells us that
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lim a, = 0. Therefore, lim |R,(x)| = 0 by sandwich theorem.
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10. Let h(z) := e ¥/** for  # 0 and h(0) := 0. Show that A (0) = 0 for all n € N.
Conclude that the remainder term in Taylor’s Theorem for x¢ = 0 does not converge
to zero as n — oo for x # 0. [Hint: By L’Hospital’s Rule, hH(l) h(z)/z* = 0 for any

z—

k € N. Use Exercise 3 to calculate o™ (z) for x # 0.] (4 marks)
Solution. First, we show that hH(l) h(z)/z* = 0 for any k € N. Note that
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Let y = 1/2% Asx — 0, y — oo. We have
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The last equality is due to a successive application of L’Hospital’s Rule. This shows
that hII(l) h(z)/z" =0
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Second, we calculate h(™ () for z # 0. Notice that
2
h'(z) = 3¢ /™ — Eh(:v)

From the formula above, if A is n-times differentiable, then A’ is also n-times dif-
ferentiable, and hence h is (n+1)-times differentiable. Inductively, we see that h is
infinitely differentiable.

We apply Leibniz’s rule to find "+ (z) for 2 # 0. By formula above, we have
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Third, we do induction on n € N to argue the following.
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For the case n = 1, by first part of our solution, we have
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This verifies (i). On the other hand, we can verify (ii) by the same argument:
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Assume both conditions (i), (ii) hold for n = 1,2,...,N. We check that these
conditions also hold for n = N + 1. To see this, by Leibniz’s rule and induction
hypothesis,
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Moreover,
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This completes the induction.

Finally, note that the remainder term for the nth Taylor’s polynomial is

Ry(x) =h(z) = ) oot = h(z)

Therefore, { R, (z)}52, is a nonzero constant sequence whenever x # 0 is fixed. The
limit is nonzero.



