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4. Show that if x > 0, then 1 + 1
2
x− 1

8
x2 ≤

√
1 + x ≤ 1 + 1

2
x. (3 marks)

Solution. Let f(x) =
√

1 + x. Then,

f ′(x) =
1

2
√

1 + x
, f ′(0) =

1

2
;

f ′′(x) = − 1

4(1 + x)
3
2

, f ′′(0) = −1

4
;

f ′′′(x) =
3

8(1 + x)
5
2

.

By Taylor’s Theorem, there is c1 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(c1)

2
(x− 0)2

= 1 +
1

2
x− 1

8(1 + c1)
3
2

x2 (1)

Similarly, there is c2 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2
(x− 0)2 +

f ′′(c2)

3!
(x− 0)3

= 1 +
1

2
x− 1

8
x2 +

1

16(1 + c2)
5
2

x3 (2)

Equation (1) gives
√

1 + x ≤ 1+ 1
2
x, while Equation (2) gives 1+ 1

2
x− 1

8
x2 ≤

√
1 + x.

This completes the proof.

9. If g(x) := sin x, show that the remainder term in Taylor’s Theorem converges to
zero as n→∞ for each fixed x0 and x. (3 marks)

Solution. Recall that the remainder term for the nth Taylor’s polynomial is given
by

Rn(x) =
g(n+1)(cn)

(n + 1)!
(x− x0)

n+1 for some cn between x and x0.

Notice that g(n+1)(x) = sinx,− sinx, cosx or − cosx. Hence, |g(n+1)(cn)| ≤ 1.
Therefore, we have

|Rn(x)| ≤ |x− x0|n+1

(n + 1)!
.

Let an = |x−x0|n+1

(n+1)!
. Since lim

n→∞

an+1

an
= lim

n→∞

|x− x0|
n + 2

= 0 < 1, ratio test tells us that

lim
n→∞

an = 0. Therefore, lim
n→∞

|Rn(x)| = 0 by sandwich theorem.
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10. Let h(x) := e−1/x
2

for x 6= 0 and h(0) := 0. Show that h(n)(0) = 0 for all n ∈ N.
Conclude that the remainder term in Taylor’s Theorem for x0 = 0 does not converge
to zero as n →∞ for x 6= 0. [Hint: By L’Hospital’s Rule, lim

x→0
h(x)/xk = 0 for any

k ∈ N. Use Exercise 3 to calculate h(n)(x) for x 6= 0.] (4 marks)

Solution. First, we show that lim
x→0

h(x)/xk = 0 for any k ∈ N. Note that

lim
x→0

h(x)/xk = lim
x→0

e−1/x
2

xk
= lim

x→0

e−1/x
2

x2k
xk

Let y = 1/x2. As x→ 0, y →∞. We have

lim
x→0

e−1/x
2

x2k
= lim

y→∞

yk

ey
= 0.

The last equality is due to a successive application of L’Hospital’s Rule. This shows
that lim

x→0
h(x)/xk = 0

Second, we calculate h(n)(x) for x 6= 0. Notice that

h′(x) =
2

x3
e−1/x

2

=
2

x3
h(x).

From the formula above, if h is n-times differentiable, then h′ is also n-times dif-
ferentiable, and hence h is (n+1)-times differentiable. Inductively, we see that h is
infinitely differentiable.

We apply Leibniz’s rule to find h(n+1)(x) for x 6= 0. By formula above, we have

h(n+1)(x) =
n∑

k=0

(
n

k

)(
2

x3

)(n−k)

h(k)(x) =
n∑

k=0

(
n

k

)
(−1)n−k

(n− k + 2)!

xn−k+3
h(k)(x).

Third, we do induction on n ∈ N to argue the following.

(i) lim
x→0

h(n)(x)

xk
= 0 for all k ∈ N

(ii) h(n)(0) = 0

For the case n = 1, by first part of our solution, we have

lim
x→0

h′(x)

xk
= lim

x→0

2h(x)

x3+k
= 0.

This verifies (i). On the other hand, we can verify (ii) by the same argument:

h′(0) = lim
x→0

h(x)− h(0)

x− 0
= lim

x→0

h(x)

x
= 0.
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Assume both conditions (i), (ii) hold for n = 1, 2, . . . , N . We check that these
conditions also hold for n = N + 1. To see this, by Leibniz’s rule and induction
hypothesis,

lim
x→0

h(N+1)(x)

xk
=

N∑
j=0

(
N

j

)
(−1)N−j(N − j + 2)!

(
lim
x→0

h(j)(x)

xN−j+3+k

)
= 0

Moreover,

h(N+1)(0) = lim
x→0

h(N)(x)− h(N)(0)

x− 0
= lim

x→0

h(N)(x)

x
= 0.

This completes the induction.

Finally, note that the remainder term for the nth Taylor’s polynomial is

Rn(x) = h(x)−
n∑

k=0

h(k)(0)

k!
xk = h(x)

Therefore, {Rn(x)}∞n=1 is a nonzero constant sequence whenever x 6= 0 is fixed. The
limit is nonzero.


