THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 4: Section 6.4: 4, 9, 10

 (3 marks)

4. Show that if $x > 0$, then $1 + \frac{1}{2}x - \frac{1}{8}$ $\frac{1}{8}x^2 \leq$ $\sqrt{1+x} \leq 1 + \frac{1}{2}$ **Solution.** Let $f(x) = \sqrt{1+x}$. Then,

$$
f'(x) = \frac{1}{2\sqrt{1+x}}, \qquad f'(0) = \frac{1}{2};
$$

$$
f''(x) = -\frac{1}{4(1+x)^{\frac{3}{2}}}, \qquad f''(0) = -\frac{1}{4};
$$

$$
f'''(x) = \frac{3}{8(1+x)^{\frac{5}{2}}}.
$$

By Taylor's Theorem, there is $c_1 \in (0, x)$ such that

$$
f(x) = f(0) + f'(0)(x - 0) + \frac{f''(c_1)}{2}(x - 0)^2
$$

= $1 + \frac{1}{2}x - \frac{1}{8(1 + c_1)^{\frac{3}{2}}}x^2$ (1)

Similarly, there is $c_2 \in (0, x)$ such that

$$
f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2}(x - 0)^2 + \frac{f''(c_2)}{3!}(x - 0)^3
$$

= $1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16(1 + c_2)^{\frac{5}{2}}}x^3$ (2)

Equation (1) gives $\sqrt{1+x} \leq 1+\frac{1}{2}x$, while Equation (2) gives $1+\frac{1}{2}x-\frac{1}{8}$ $\frac{1}{8}x^2 \leq$ √ $1 + x$. This completes the proof.

9. If $g(x) := \sin x$, show that the remainder term in Taylor's Theorem converges to zero as $n \to \infty$ for each fixed x_0 and x. (3 marks) Solution. Recall that the remainder term for the nth Taylor's polynomial is given by

$$
R_n(x) = \frac{g^{(n+1)}(c_n)}{(n+1)!} (x - x_0)^{n+1}
$$
 for some c_n between x and x_0 .

Notice that $g^{(n+1)}(x) = \sin x, -\sin x, \cos x$ or $-\cos x$. Hence, $|g^{(n+1)}(c_n)| \leq 1$. Therefore, we have

$$
|R_n(x)| \le \frac{|x - x_0|^{n+1}}{(n+1)!}.
$$

Let $a_n = \frac{|x - x_0|^{n+1}}{(n+1)!}$. Since $\lim_{n \to \infty}$ a_{n+1} $\frac{n+1}{a_n} = \lim_{n \to \infty}$ $|x-x_0|$ $n + 2$ $= 0 < 1$, ratio test tells us that $\lim_{n\to\infty} a_n = 0$. Therefore, $\lim_{n\to\infty} |R_n(x)| = 0$ by sandwich theorem.

10. Let $h(x) := e^{-1/x^2}$ for $x \neq 0$ and $h(0) := 0$. Show that $h^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_0 = 0$ does not converge to zero as $n \to \infty$ for $x \neq 0$. [*Hint*: By L'Hospital's Rule, $\lim_{x \to 0} h(x)/x^k = 0$ for any $k \in \mathbb{N}$. Use Exercise 3 to calculate $h^{(n)}(x)$ for $x \neq 0$. (4 marks) **Solution.** First, we show that $\lim_{x\to 0} h(x)/x^k = 0$ for any $k \in \mathbb{N}$. Note that

$$
\lim_{x \to 0} h(x)/x^k = \lim_{x \to 0} \frac{e^{-1/x^2}}{x^k} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x^{2k}} x^k
$$

Let $y = 1/x^2$. As $x \to 0$, $y \to \infty$. We have

$$
\lim_{x \to 0} \frac{e^{-1/x^2}}{x^{2k}} = \lim_{y \to \infty} \frac{y^k}{e^y} = 0.
$$

The last equality is due to a successive application of L'Hospital's Rule. This shows that $\lim_{x\to 0} h(x)/x^k = 0$

Second, we calculate $h^{(n)}(x)$ for $x \neq 0$. Notice that

$$
h'(x) = \frac{2}{x^3}e^{-1/x^2} = \frac{2}{x^3}h(x).
$$

From the formula above, if h is n-times differentiable, then h' is also n-times differentiable, and hence h is $(n+1)$ -times differentiable. Inductively, we see that h is infinitely differentiable.

We apply Leibniz's rule to find $h^{(n+1)}(x)$ for $x \neq 0$. By formula above, we have

$$
h^{(n+1)}(x) = \sum_{k=0}^{n} {n \choose k} \left(\frac{2}{x^3}\right)^{(n-k)} h^{(k)}(x) = \sum_{k=0}^{n} {n \choose k} (-1)^{n-k} \frac{(n-k+2)!}{x^{n-k+3}} h^{(k)}(x).
$$

Third, we do induction on $n \in \mathbb{N}$ to argue the following.

(i)
$$
\lim_{x \to 0} \frac{h^{(n)}(x)}{x^k} = 0 \text{ for all } k \in \mathbb{N}
$$

(ii) $h^{(n)}(0) = 0$

For the case $n = 1$, by first part of our solution, we have

$$
\lim_{x \to 0} \frac{h'(x)}{x^k} = \lim_{x \to 0} \frac{2h(x)}{x^{3+k}} = 0.
$$

This verifies (i). On the other hand, we can verify (ii) by the same argument:

$$
h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} \frac{h(x)}{x} = 0.
$$

Assume both conditions (i), (ii) hold for $n = 1, 2, ..., N$. We check that these conditions also hold for $n = N + 1$. To see this, by Leibniz's rule and induction hypothesis,

$$
\lim_{x \to 0} \frac{h^{(N+1)}(x)}{x^k} = \sum_{j=0}^N \binom{N}{j} (-1)^{N-j} (N-j+2)! \left(\lim_{x \to 0} \frac{h^{(j)}(x)}{x^{N-j+3+k}} \right) = 0
$$

Moreover,

$$
h^{(N+1)}(0) = \lim_{x \to 0} \frac{h^{(N)}(x) - h^{(N)}(0)}{x - 0} = \lim_{x \to 0} \frac{h^{(N)}(x)}{x} = 0.
$$

This completes the induction.

Finally, note that the remainder term for the nth Taylor's polynomial is

$$
R_n(x) = h(x) - \sum_{k=0}^{n} \frac{h^{(k)}(0)}{k!} x^k = h(x)
$$

Therefore, ${R_n(x)}_{n=1}^{\infty}$ is a nonzero constant sequence whenever $x \neq 0$ is fixed. The limit is nonzero.