THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 3: Section 6.1: 4, 8, 9

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x^2$ for x rational, f(x) := 0 for x irrational. Show that f is differentiable at x = 0, and find f'(0). (2 marks)

Solution. We claim that f'(0) = 0. Let $\epsilon > 0$. We choose $\delta = \epsilon$. For $0 < |x-0| < \delta$,

- (i) if x is rational, then $\left|\frac{f(x) f(0)}{x 0} 0\right| = \left|\frac{x^2}{x} 0\right| = |x| < \delta = \epsilon;$ (ii) if x is irrational, then $\left|\frac{f(x) - f(0)}{x - 0} - 0\right| = 0 < \epsilon.$
- Therefore, $\lim_{x \to 0} \frac{f(x) f(0)}{x 0} = 0.$
- 8. Determine where each of the following functions from \mathbb{R} to \mathbb{R} is differentiable and find the derivative: (1.5 marks each)
 - (a) f(x) := |x| + |x+1|, (b) g(x) := 2x + |x|, (c) h(x) := x|x|, (d) $k(x) := |\sin x|$.

Solution.

In the following, we use the fact that the function |x| is differentiable on $\mathbb{R} \setminus \{0\}$ with derivative $\frac{x}{|x|}$, but it is not differentiable at 0.

(a) By chain rule, we see that f is differentiable on $\mathbb{R} \setminus \{0, -1\}$, and the derivative is

$$f'(x) = \frac{x}{|x|} + \frac{x+1}{|x+1|}$$

Moreover, f is not differentiable at either x = 0 or x = -1.

(b) Clearly, g is differentiable on $\mathbb{R} \setminus \{0\}$, and the derivative is

$$g'(x) = 2 + \frac{x}{|x|}.$$

Moreover, g is not differentiable at the point x = 0.

(c) By product rule, h is differentiable on $\mathbb{R} \setminus \{0\}$, and the derivative is

$$h'(x) = |x| + x \frac{x}{|x|} = 2|x|.$$

We claim that h is also differentiable at x = 0. Note

$$\lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} |x| = 0.$$

(d) By chain rule, k is differentiable at x whenever $\sin x \neq 0$. That is the set $\mathbb{R} \setminus (\pi \mathbb{Z})$. Moreover, the derivative is

$$k'(x) = \frac{\sin x}{|\sin x|} \cos x.$$

For $n \in \mathbb{Z}$,

$$\lim_{h \to 0} \frac{k(n\pi + h) - k(n\pi)}{h} = \lim_{h \to 0} \frac{|\sin h|}{h}$$

The left hand limit is -1 while the right hand limit is 1, therefore the limit does not exist. We conclude that k is not differentiable at every point in $\pi \mathbb{Z}$.

9. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is an **even function** [that is, f(-x) = f(x) for all $x \in \mathbb{R}$] and has a derivative at every point, then the derivative f' is an **odd function** [that is, f'(-x) = -f'(x) for all $x \in \mathbb{R}$]. Also prove that if $g : \mathbb{R} \to \mathbb{R}$ is a differentiable odd function, then g' is an even function. (2 marks)

Solution.

Using the formula f(x) = f(-x), by chain rule, we have f'(x) = f'(-x)(-1) = -f'(-x) whenever f is differentiable at -x. Hence, f'(-x) = -f'(x) for all $x \in \mathbb{R}$.

By g(x) = -g(-x), we have g'(x) = -g'(-x)(-1) = g'(-x). Therefore, g' is an even function.