THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 2: Section 5.4: 2, 3; Section 6.1: 10

2. Show that the function $f(x) := 1/x^2$ is uniformly continuous on $A := [1, \infty)$, but that it is not uniformly continuous on $B := (0, \infty)$. (3 marks)

Solution.

Note that

$$f(x) - f(y) = \frac{(y - x)(y + x)}{x^2 y^2} = (y - x)\left(\frac{1}{x^2 y} + \frac{1}{x y^2}\right)$$

If $x, y \in A$, then $\frac{1}{x^2y}$ and $\frac{1}{xy^2} \leq 1$. Therefore, $|f(x) - f(y)| \leq 2|x - y|$ on A. f is Lipschitz and hence uniformly continuous on A.

On the other hand, let $x_n = \frac{1}{n}$. Then, (x_n) is a Cauchy sequence in B, but $f(x_n) = n^2$ is not a Cauchy sequence. Therefore, f is not uniformly continuous on B. (c.f. Theorem 5.4.7)

- 3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not uniformly continuous on the given sets. (2 marks each)
 - (a) $f(x) := x^2, A := [0, \infty).$

(b)
$$g(x) := \sin(1/x), B := (0, \infty).$$

Solution.

- (a) Let $\epsilon_0 = 1$ and $\delta > 0$. Let $x_{\delta} = \frac{2}{\delta}$, $y_{\delta} = \frac{2}{\delta} + \frac{\delta}{2}$. Then, $|x_{\delta} y_{\delta}| = \frac{\delta}{2} < \delta$ and $|f(x_{\delta}) f(y_{\delta})| = (\frac{\delta}{2})^2 + 2 > \epsilon_0$.
- (b) Let $\epsilon_0 = 1$ and $x_n = \frac{1}{2\pi n}$, $y_n = \frac{1}{2\pi n + \frac{\pi}{2}}$ for each $n \in \mathbb{N}$. Then, $\lim_{n \to \infty} |x_n y_n| = |0 0| = 0$, and $|g(x_n) g(y_n)| = 1 \ge \epsilon_0$.
- 10. Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) := x^2 \sin(1/x^2)$ for $x \neq 0$, and g(0) := 0. Show that g is differentiable for all $x \in \mathbb{R}$. Also show that the derivative g' is not bounded on the interval [-1, 1]. (3 marks)

Solution.

Note that $1/x^2$ is differentiable on $\mathbb{R} \setminus \{0\}$ and $\sin x$ is differentiable on \mathbb{R} . By chain rule, the composite function $\sin(1/x^2)$ is differentiable on $\mathbb{R} \setminus \{0\}$. Therefore, the function g is differentiable on $\mathbb{R} \setminus \{0\}$. At x = 0, note that

$$\frac{g(x) - g(0)}{x - 0} = \frac{x^2 \sin(1/x^2) - 0}{x - 0} = x \sin(1/x^2)$$

By sandwich theorem, $\lim_{x\to 0} \frac{g(x) - g(0)}{x - 0} = 0$. Therefore, g is differentiable for all $x \in \mathbb{R}$.

Notice that for $x \neq 0$, by chain rule, we have $g'(x) = 2x \sin(1/x^2) - \frac{2}{x} \cos(1/x^2)$. Let $x_n = \frac{1}{\sqrt{2\pi n}}$ for each $n \in \mathbb{N}$. Then, (x_n) is a sequence in [-1, 1]. Moreover, $g'(x_n) = -2\sqrt{2\pi n} \to -\infty$ as $n \to \infty$. Therefore, g' is not bounded on the interval [-1, 1].