THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 1: Section 5.4: 4, 6, 7

4. Show that the function $f(x) := 1/(1+x^2)$ for $x \in \mathbb{R}$ is uniformly continuous on \mathbb{R} . (2 marks)

Solution.

Method 1. Since f is a continuous function on \mathbb{R} such that $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ exist, f is uniformly continuous on \mathbb{R} . We may show why this is true. Let $\epsilon > 0$. By Cauchy criteria, there is M > 0 such that

(a) if
$$x, y > M$$
, then $|f(x) - f(y)| < \epsilon$
(b) if $x, y < -M$, then $|f(x) - f(y)| < \epsilon$

Moreover, since f is uniformly continuous on the closed and bounded interval [-M - 1, M + 1], there is $\delta > 0$ such that if $x, y \in [-M - 1, M + 1]$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Fix $\delta' = \min(\delta, 1)$, if $x, y \in \mathbb{R}$ and $|x - y| < \delta'$, then we can conclude that one of the three cases must occur:

- (i) x, y > M
- (ii) x, y < -M

(iii)
$$x, y \in [-M - 1, M + 1]$$
 and $|x - y| < \delta$

Therefore, $|f(x) - f(y)| < \epsilon$. This completes the proof.

Method 2.

$$f(x) - f(y) = \frac{1}{1 + x^2} - \frac{1}{1 + y^2}$$
$$= \frac{y^2 - x^2}{(1 + x^2)(1 + y^2)}$$
$$= \frac{(y - x)(y + x)}{(1 + x^2)(1 + y^2)}$$

Note that $\left|\frac{x}{1+x^2}\right| \leq \frac{1}{2}$ iff $2|x| \leq 1+x^2$ iff $(|x|-1)^2 \geq 0$. Therefore, $\left|\frac{y+x}{(1+x^2)(1+y^2)}\right| \leq \frac{|x|}{1+x^2} + \frac{|y|}{1+y^2} \leq 1$, hence $|f(x) - f(y)| \leq |y-x|$. f is a Lipschitz function, and hence uniformly continuous. 6. Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and if they are both bounded on A, then their product fg is uniformly continuous on A. (2 marks) Solution.

Let M > 0 such that $|f(x)|, |g(x)| \leq M$ for all $x \in A$. Let $\epsilon > 0$. By uniform continuity of f, g, there are $\delta_1, \delta_2 > 0$ such that

- (i) if $x, y \in A$ and $|x y| < \delta_1$, $|f(x) f(y)| < \frac{\epsilon}{2M}$ (ii) if $x, y \in A$ and $|x - y| < \delta_2$, $|g(x) - g(y)| < \frac{\epsilon}{2M}$
- (ii) If $x, y \in A$ and $|x y| < b_2$, $|g(x) g(y)| < \frac{1}{2M}$

Let $\delta = \min(\delta_1, \delta_2)$. If $x, y \in A$ and $|x - y| < \delta$, then

$$\begin{split} |f(x)g(x) - f(y)g(y)| &\leq |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - f(y)g(y)| \\ &= |g(x)| |f(x) - f(y)| + |f(y)| |g(x) - g(y)| \\ &< M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \epsilon \end{split}$$

Therefore, fg is uniformly continuous on A.

7. If f(x) := x and $g(x) := \sin x$, show that both f and g are uniformly continuous on \mathbb{R} , but their product fg is not uniformly continuous on \mathbb{R} . (6 marks)

Solution.

We may show that f, g are Lipschitz functions. For function g,

$$|\sin x - \sin y| = |2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})|$$
$$\leq 2 \cdot 1 \cdot |\sin(\frac{x-y}{2})|$$
$$\leq 2 \cdot |\frac{x-y}{2}| = |x-y|$$

To show that fg is not uniformly continuous on \mathbb{R} , we may argue that for any $\delta > 0$, there is some $x \in \mathbb{R}$ such that $|fg(x+\delta) - fg(x)| \ge 1$. Indeed,

$$|fg(x+\delta) - fg(x)| = |(x+\delta)\sin(x+\delta) - x\sin x|$$

$$\geq |x(\sin(x+\delta) - \sin x)| - \delta$$

$$= |x| |2\cos(x+\frac{\delta}{2})\sin(\frac{\delta}{2})| - \delta$$

We may assume $\delta < 1$, so that $\sin(\frac{\delta}{2}) > 0$. For such fixed δ , we choose $x = 2\pi N - \frac{\delta}{2}$ for some large $N \in \mathbb{N}$. Therefore, $|fg(x+\delta) - fg(x)| \ge (4\pi N - \delta)\sin(\frac{\delta}{2}) - \delta$. Clearly, when N is chosen properly according to δ , we will have $|fg(x+\delta) - fg(x)| \ge 1$.