THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 1: Section 5.4: 4, 6, 7

4. Show that the function $f(x) := 1/(1 + x^2)$ for $x \in \mathbb{R}$ is uniformly continuous on \mathbb{R} . (2 marks)

Solution.

Method 1. Since f is a continuous function on R such that $\lim_{x \to -\infty} f(x)$ and $\lim_{x\to\infty} f(x)$ exist, f is uniformly continuous on R. We may show why this is true. Let $\epsilon > 0$. By Cauchy criteria, there is $M > 0$ such that

(a) if $x, y > M$, then $|f(x) - f(y)| < \epsilon$ (b) if $x, y < -M$, then $|f(x) - f(y)| < \epsilon$

Moreover, since f is uniformly continuous on the closed and bounded interval $[-M-1, M+1]$, there is $\delta > 0$ such that if $x, y \in [-M-1, M+1]$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Fix $\delta' = \min(\delta, 1)$, if $x, y \in \mathbb{R}$ and $|x - y| < \delta'$, then we can conclude that one of the three cases must occur:

- (i) $x, y > M$
- (ii) $x, y < -M$
- (iii) $x, y \in [-M-1, M+1]$ and $|x-y| < \delta$

Therefore, $|f(x) - f(y)| < \epsilon$. This completes the proof.

Method 2.

$$
f(x) - f(y) = \frac{1}{1 + x^2} - \frac{1}{1 + y^2}
$$

$$
= \frac{y^2 - x^2}{(1 + x^2)(1 + y^2)}
$$

$$
= \frac{(y - x)(y + x)}{(1 + x^2)(1 + y^2)}
$$

Note that $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \overline{x} $1 + x^2$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq \frac{1}{2}$ $\frac{1}{2}$ iff $2|x| \leq 1 + x^2$ iff $(|x| - 1)^2 \geq 0$. Therefore, $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $y + x$ $(1+x^2)(1+y^2)$ $\overline{\mathcal{L}}$ $\leq \frac{|x|}{1}$ $\frac{1}{1+x^2}$ + $|y|$ $\frac{|y|}{1+y^2} \leq 1$, hence $|f(x) - f(y)| \leq$ $|y - x|$. f is a Lipschitz function, and hence uniformly continuous.

6. Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and if they are both bounded on A, then their product fg is uniformly continuous on A. (2 marks) Solution.

Let $M > 0$ such that $|f(x)|, |g(x)| \leq M$ for all $x \in A$. Let $\epsilon > 0$. By uniform continuity of f, g, there are $\delta_1, \delta_2 > 0$ such that

(i) if $x, y \in A$ and $|x - y| < \delta_1$, $|f(x) - f(y)| < \frac{\epsilon}{2\lambda}$ 2M (ii) if $x, y \in A$ and $|x - y| < \delta_2$, $|g(x) - g(y)| < \frac{\epsilon}{2\Lambda}$ 2M

Let $\delta = \min(\delta_1, \delta_2)$. If $x, y \in A$ and $|x - y| < \delta$, then

$$
|f(x)g(x) - f(y)g(y)| \le |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - f(y)g(y)|
$$

= |g(x)| |f(x) - f(y)| + |f(y)| |g(x) - g(y)|

$$
< M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \epsilon
$$

Therefore, fg is uniformly continuous on A .

7. If $f(x) := x$ and $g(x) := \sin x$, show that both f and g are uniformly continuous on R, but their product fg is not uniformly continuous on R. (6 marks)

Solution.

We may show that f, g are Lipschitz functions. For function g ,

$$
|\sin x - \sin y| = |2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})|
$$

$$
\leq 2 \cdot 1 \cdot |\sin(\frac{x-y}{2})|
$$

$$
\leq 2 \cdot |\frac{x-y}{2}| = |x-y|
$$

To show that fg is not uniformly continuous on R, we may argue that for any $\delta > 0$, there is some $x \in \mathbb{R}$ such that $|fg(x + \delta) - fg(x)| \ge 1$. Indeed,

$$
|fg(x+\delta) - fg(x)| = |(x+\delta)\sin(x+\delta) - x\sin x|
$$

\n
$$
\ge |x(\sin(x+\delta) - \sin x)| - \delta
$$

\n
$$
= |x| |2\cos(x+\frac{\delta}{2})\sin(\frac{\delta}{2})| - \delta
$$

We may assume $\delta < 1$, so that $\sin(\frac{\delta}{2}) > 0$. For such fixed δ , we choose $x = 2\pi N - \frac{\delta}{2}$ 2 for some large $N \in \mathbb{N}$. Therefore, $|\tilde{fg}(x+\delta) - fg(x)| \geq (4\pi N - \delta) \sin(\frac{\delta}{2}) - \delta$. Clearly, when N is chosen properly according to δ , we will have $|fg(x + \delta) - fg(x)| \geq 1$.