THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 11: Section 9.4: 16, 17, 19

16. Show by integrating the series for $1/(1+x)$ that if $|x| < 1$, then

$$
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.
$$

(3 marks)

Solution. For each $a \in (0, 1)$, notice that the series $\sum_{n=0}^{\infty} (-1)^n x^n$ converges uniformly to $1/(1+x)$ on $[-a, a]$. Therefore, for any $x \in [-a, a]$, we have

$$
\ln(1+x) - \ln(1+0) = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt
$$

=
$$
\sum_{n=0}^\infty (-1)^n \int_0^x t^n dt
$$

=
$$
\sum_{n=0}^\infty \frac{(-1)^n}{n+1} x^{n+1}
$$

=
$$
\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n.
$$

$$
\ln(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n.
$$

The first line is due to the fundamental theorem of calculus (first form) (7.3.1). Since this holds for any $a \in (0,1)$ and $x \in [-a,a]$, it also holds for any $x \in (-1,1)$.

17. Show that if $|x| < 1$, then Arctan $x = \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n$ $2n + 1$ x^{2n+1} . (4 marks)

Solution. This is similar to Q16. Observe that $\frac{d}{dx}$ Arctan $x = 1/(1 + x^2)$ for every $x \in \mathbb{R}$. Moreover, for each $a \in (0,1)$, the series $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n x^{2n}$ converges to $1/(1+x^2)$ uniformly on $[-a, a]$. Therefore, for any $x \in [-a, a]$, we have

$$
\begin{aligned} \text{Arctan } x - \text{Arctan } 0 &= \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} \, dt \\ &= \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} \, dt \\ &= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \\ \text{Arctan } x &= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \end{aligned}
$$

Since it holds for every $a \in (0, 1)$, the formula also holds for every $x \in (-1, 1)$.

19. Find a series expansion for
$$
\int_0^x e^{-t^2} dt
$$
 for $x \in \mathbb{R}$. (3 marks)

Solution. For every $M > 0$, the series $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n$ n! t^{2n} converges to e^{-t^2} uniformly on $[-M, M]$. Hence, for any $x \in [-M, M]$, we obtain the series expansion

$$
\int_0^x e^{-t^2} dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n}{n!} t^{2n} dt
$$

$$
= \sum_{n=0}^\infty \int_0^x \frac{(-1)^n}{n!} t^{2n} dt
$$

$$
= \sum_{n=0}^\infty \frac{(-1)^n}{n!(2n+1)} x^{2n+1}
$$

Since $M > 0$ is arbitrary, the formula holds for any $x \in \mathbb{R}$.