THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 11: Section 9.4: 16, 17, 19

16. Show by integrating the series for 1/(1+x) that if |x| < 1, then

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

(3 marks)

Solution. For each $a \in (0, 1)$, notice that the series $\sum_{n=0}^{\infty} (-1)^n x^n$ converges uniformly to 1/(1+x) on [-a, a]. Therefore, for any $x \in [-a, a]$, we have

$$\ln(1+x) - \ln(1+0) = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt$$
$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{n+1} x^{n+1}$$
$$= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n.$$
$$\ln(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n.$$

The first line is due to the fundamental theorem of calculus (first form) (7.3.1). Since this holds for any $a \in (0, 1)$ and $x \in [-a, a]$, it also holds for any $x \in (-1, 1)$.

17. Show that if |x| < 1, then $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$. (4 marks)

Solution. This is similar to Q16. Observe that $\frac{d}{dx} \operatorname{Arctan} x = 1/(1+x^2)$ for every $x \in \mathbb{R}$. Moreover, for each $a \in (0, 1)$, the series $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ converges to $1/(1+x^2)$

uniformly on [-a, a]. Therefore, for any $x \in [-a, a]$, we have

$$\operatorname{Arctan} x - \operatorname{Arctan} 0 = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$$
$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1}$$
$$\operatorname{Arctan} x = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1}$$

Since it holds for every $a \in (0, 1)$, the formula also holds for every $x \in (-1, 1)$.

19. Find a series expansion for
$$\int_0^x e^{-t^2} dt$$
 for $x \in \mathbb{R}$. (3 marks)

Solution. For every M > 0, the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^{2n}$ converges to e^{-t^2} uniformly on [-M, M]. Hence, for any $x \in [-M, M]$, we obtain the series expansion

$$\int_0^x e^{-t^2} dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n}{n!} t^{2n} dt$$
$$= \sum_{n=0}^\infty \int_0^x \frac{(-1)^n}{n!} t^{2n} dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{n!(2n+1)} x^{2n+1}$$

Since M > 0 is arbitrary, the formula holds for any $x \in \mathbb{R}$.