THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2020) Suggested Solution of Homework 10: Section 9.4: 1(a),(e), 2, 3

1. Discuss the convergence and the uniform convergence of the series $\sum f_n$, where $f_n(x)$ is given by: (a) $(x^2 + n^2)^{-1}$, (e) $x^n/(x^n + 1)$ $(x \ge 0)$ (5 marks)

Solution.

(a) For each $x \in \mathbb{R}$, note that

$$
\frac{1}{x^2 + n^2} \le \frac{1}{n^2}
$$

Since $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^2} < \infty$, by M-test (9.4.6), we see that $\sum f_n$ converges uniformly on R.

(e) First, we notice that

$$
\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ \frac{1}{2} & \text{if } x = 1, \\ 1 & \text{if } x > 1. \end{cases}
$$

Therefore, if $\sum f_n(x)$ converges, then $x \in [0,1)$. We will show that

- (i) For each $a \in (0, 1)$, $\sum f_n$ converges uniformly on [0, a].
- (ii) $\sum f_n$ does not converge uniformly on [0, 1).

Notice that if (i) is shown, one of the consequence is that $\sum f_n(x)$ converges on $[0, 1)$, but by (ii), this convergence is not uniform. To see (i), for each $x \in [0, a]$,

$$
f_n(x) \le \frac{a^n}{0+1} = a^n
$$

.

Since $\sum_{n=1}^{\infty}$ $n=1$ $a^{n} < \infty$ ($a < 1$), M-test tells us that $\sum f_{n}$ converges uniformly on $[0, a]$.

To see (ii), we will use the fact that if $\sum f_n$ converges uniformly on [0, 1), then $\lim_{n\to\infty}||f_n||=0$, where

$$
||f_n|| := \sup\{|f_n(x)| : x \in [0,1)\}.
$$

However, $f_n(1) = 1/2$ for each $n \in \mathbb{N}$ and also by the continuity of the function f_n , we would conclude that $||f_n|| \geq 1/2$, which contradicts to the fact above.

To do that. Suppose $\sum f_n$ converges uniformly on [0, 1). By Cauchy criterion, for every $\epsilon > 0$, there is some $N \in \mathbb{N}$ so that for every $n \geq N$ and $p \geq 1$, we have

$$
|f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x)| < \epsilon \quad \text{for all } x \in [0,1).
$$

We will show that the sequence $\{f_n\}$ fails the criterion. Let $\epsilon = 1/4$. For each *N* ∈ N, we put *n* = *N* and *p* = 1. At the point $x = (1/2)^{1/(n+1)}$ ∈ [0, 1), we have

$$
|f_{n+1}(x)| = \frac{\frac{1}{2}}{\frac{1}{2}+1} = \frac{1}{3} > \epsilon.
$$

This completes the proof.

2. If $\sum a_n$ is an absolutely convergent series, then the series $\sum a_n \sin nx$ is absolutely and uniformly convergent. (2 marks)

Solution. For every $x \in \mathbb{R}$, the sequence $\{\sin nx\}$ is bounded. By Q7(a) in Homework 9, we see that $\sum a_n \sin nx$ converges absolutely for every $x \in \mathbb{R}$. To see that $\sum a_n \sin nx$ converges uniformly on R, for every $x \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
|a_n \sin nx| \le |a_n|.
$$

Notice that $\sum |a_n| < \infty$ by assumption. So M-test implies that $\sum_{n=1}^{\infty}$ $n=1$ a_n sin nx converges uniformly on R. Indeed, M-test implies both absolute convergence and uniform convergence.

3. Let (c_n) be a decreasing sequence of positive numbers. If $\sum c_n \sin nx$ is uniformly convergent, then $\lim_{n \to \infty} (nc_n) = 0.$ (3 marks)

Solution. Let $f_n(x) = c_n \sin nx$ and let $\epsilon > 0$. Using Cauchy criterion, there is some $N \in \mathbb{N}$ so that for every $n \geq N$ and $p \geq 1$, we have

$$
|f_{n+1}(x) + f_{n+2}(x) + \cdots + f_{n+p}(x)| < \epsilon \quad \text{for all } x \in \mathbb{R}.
$$

In particular, if we choose $p = n$ and $x = \pi/4n$, then for $(n + 1) \le k \le 2n$,

$$
f_k(x) = c_k \sin \frac{k\pi}{4n} \ge c_k \sin \frac{n\pi}{4n} = \frac{c_k}{\sqrt{2}} > 0.
$$

Since (c_n) is a decreasing sequence, it follows that

$$
\frac{nc_{2n}}{\sqrt{2}} \le \frac{c_{n+1} + c_{n+2} + \dots + c_{2n}}{\sqrt{2}} < \epsilon \quad \text{for every } n \ge N.
$$

Therefore, $\lim_{n\to\infty}(2n)c_{2n}=0$. On the other hand,

$$
(2n+1)c_{2n+1} \le (2n+1)c_{2n} = 2nc_{2n} + c_{2n} \to 0 \text{ as } n \to \infty.
$$

These show that $\lim_{n \to \infty} (nc_n) = 0$, because both $\lim_{n \to \infty} (2n)c_{2n} = \lim_{n \to \infty} (2n+1)c_{2n+1} = 0$.