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1 (P.171 Q4). Let f : R — R be defined by f(z) = . .
0  z irrational

a. Show that f is differentiable at x =0
b. Find f'(0)
Solution.

a. By definition of differentiability, it suffices to verify the limit lim,_¢ %5(0) =0.
Let € > 0. Take 6 := ¢ > 0. Now suppose 0 < |x — 0| < 6. By definition of f, we have
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Hence by the € — § definition, the limit is verified.

b. By definition, the derivative at z = 0 is given by
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Hence, f'(0) = 0 by the first part.

Comment.
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a. It is not accepted to compute lim0 and claim the existence of
z—

zeQ :

the limit in question without verifying why the equality between them gives the answer.

b. -
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2 (P.171 Q10). Let g : R — R be defined by g(z) = {0 0
xr =

a. Show that g is differentiable for all = € R.
b. Show that the derivative ¢’ is not bounded on the interval [—1, 1]
Solution.

a. Case 1: Suppose x # 0. Let I C R be an open interval such that x € I but 0 ¢ I. Define
fifa, fs o T — R by fi(t) = 2, fot) = 1/t2, f3(t) = sin(1/t*). Note that g = f1 - f3 on
I. Tt suffices to show that f; - f3 is differentiable at . By product rule, it remains to show
f1 and f3 are differentiable at x individually. Since f; is a polynomial from an open set, the
result is clear. For f3, note that f5(¢t) = sin(f2(t)) for ¢t € I. Since x # 0, fi(z) # 0. By
quotient rule, since f; is differentiable at x,f2(¢t) = 1/f1(t) is differentiable at z. Furthermore
since t > sin(t) is differentiable everywhere on R, it is differentiable at f(x) = 1/22. By chain
rule, f3(t) = sin(f2(t)) is differentiable at x.

Case 2: Suppose x = 0. Then for all ¢t # 0, we have

g(t) — g(0) : 2
By the sandwich theorem, since lim;_,q [t|] = 0, we have lim;_,o ‘%’ = 0, which implies

limy_,q % = 0. By definition of differentiability, g is differentiable at = = 0.

2zsin(1/2?) — 207  cos(1/2?) x #0
0 z=0
Now consider the sequence defined by x,, := 1/v/2nn for all n € N. Then for all n € N, we have
z, € [-1,1], sin(1/22) = 0 and cos(1/22) = 1. Hence, ¢'(z,) = —2v2n7 for all n € N and
lim,, ¢’'(x,) = —oo. Therefore, (¢'(x,)) is an unbounded sequence. It is easy to see that the
existence of such sequence contradicts the boundedness of g’ on the interval in question.

b. By chain rule and product rule, we can compute that ¢'(z) = {

Comment.

a. Differentiability is a local behavior. To check against differentiability at a point, it usually suffices
to restrict the function domain to an open interval (or open neighborhood) containing the point.
This principle is used in the solution to the case x # 0.

b. The boundedness of ¢’(z) on [—1,1] is equivalent to the boundedness of 2z~ cos(1/2?) there. It
is incorrect to verify the boundedness of the latter by stating z~! is unbounded while cos(l / x2)
is bounded and hence their product is unbounded. Consider simply 2~ ! and z. The former is
unbounded on [—1, 1] while the latter is bounded on [—1, 1], but their product, which is a constant
function, is still bounded.



3 (P.171 Q13). Let f : R — R be a real-valued function and ¢ € R.

a. Suppose f is differentiable at c¢. Show that f'(¢) = lim (n(f(c+1/n) — f(c)))
n—oo

b. Show with an example of f that the existence of sequential limit in part(a) does not imply the
existence of f'(c).

Solution.

a. Note that we have f/(¢) = limy_0 w By sequential criteria of limit, as lim, 1/n = 0,

we have f'(c) = lim,, W = lim, (n(f(c+1/n) — f(c))).
b. Here we give 2 examples.

Example 1: Take f(x) = |z| defined on R and ¢ = 0. It is standard that f is not differen-
tiable at ¢ (for example by considering both right-hand and left-hand limits). However, we still
have lim, n(f(c+ 1/n) — f(¢)) = lim, n(]1/n| — |0]) = lim,, n/n = 1.

Example 2: Let A := {1/n | n € N} U{0}. Take f to be the characteristic function of A, X4,

1 z€A
that is, X4 (z) = and take ¢ = 0. It is clear that f is not continuous at 0 and hence

0 z¢ A
not differentiable at 0. However, we have lim, n(f(0 4+ 1/n) — £(0)) = lim, n(f(1/n) — f(0)) =
lim, n(1—1) =0.

Comment.
a. Sequential criteria is the keyword.

b. The above Example 1 demonstrate the importance of computing limits in all (2) directions.
Besides the absolute value function, functions like the floor and ceiling are also counterexamples.
Example 2 demonstrates instead the importance of having enough points to verify convergence:
it is too weak to imply the existence of a limit by approaching with just 1 sequence. Functions
like the one in Question 1 give good counterexamples as well.



