MMAT5010 2021 Home Test 2

Q1. (a) Let $x_0 \in X$ be non-zero. By Hahn-Banach Theorem, there exists $x^* \in X^*$ with $||x^*|| = 1$ and $x^*(x_0) = ||x_0||$. Then we can define $f: X \to \mathbb{R}$ to be $f(x) = ||x_0||^{-1}x^*(x)$.

(b) Let f by (a). We can define $T: X \to X$ to be $T(x) = f(x)x_0$. Then $||T|| = ||f|| ||x_0|| = 1$ and $Tx_0 = x_0$.

Q2. (a) Note that the natural basis vectors of ℓ_p , e_i , i = 1, 2, ..., lie in X. But $Te_n = ne_n$. Hence T is unbounded.

(b) In this case T must not be an isomorphism because it is not even continuous.

Q3. (b) If (x_n) is weakly convergent to both $x, y \in H$, then x = y must hold. Otherwise, by Hahn Banach Theorem there is $f \in H^*$ such that $f(x) \neq f(y)$. But $\lim_n f(x_n) = f(x) = f(y)$ by assumption.

(b) We only need to show that forward direction. Note

$$||x_n - x||^2 = ||x_n||^2 - \langle x_n, x \rangle - \langle x, x_n \rangle + ||x||^2$$

By weak convergence, $\langle x_n, x \rangle \to 0$. Hence $||x_n - x||^2 \to 0$.

Q4. (a) Suppose P-Q is an orthogonal projection. Let $x \in N$. Then $\langle x - (P-Q)x, (P-Q)x \rangle = 0$, i.e. $\langle x, Px - x \rangle - ||Px - x||^2 = 0$. Note $\langle x, Px - x \rangle = -||Px - x||^2 + \langle Px, Px - x \rangle$. Because $Px - x \in M^{\perp}$ and $Px \in M$, combining everything gives ||Px - x|| = 0. Hence $x \in M$.

Suppose $N \subset M$. Let $x \in H$. Then

$$\langle x - (P - Q)x, (P - Q)x \rangle = \langle x - P(x - Qx), P(x - Qx) \rangle$$

$$= \langle x - Qx + Qx - P(x - Qx), P(x - Qx) \rangle$$

$$= \langle Qx, Px - Qx \rangle$$

$$= \langle Qx, QPx - Qx \rangle + \langle Qx, Px - QPx \rangle$$

where in the above Px = QPx + Px - QPx is in its orthogonal decomposition, so that $Px - QPx \in N^{\perp}$, and the second term = 0. For the first term, notice that $Px - x \in M^{\perp} \subset N^{\perp}$, so QPx - Qx = 0, so the first term = 0 as well. Hence P - Q is an orthogonal projection.

(b) Suppose that P - Q is an orthogonal projection, then $N \subset M$.

Claim. $(P-Q)(H) \subset M \cap N^{\perp}$.

Suppose $y \in (P-Q)(H)$. Note $y \in N^{\perp}$ if and only if Qy = 0. We know that there is $x \in H$ such that Px - Qx = y. Therefore Qy = QPx - Qx = 0. (here QPx = Qx)

Claim. $M \cap N^{\perp} \subset (P - Q)(H)$.

If $x \in M \cap N^{\perp}$. First $x \in M$ implies $Px = x, x \in N^{\perp}$ implies Qx = 0. Hence $Px - Qx = x, x \in (P - Q)(H)$.