MMAT5010 2021 Home Test 1

Q1. (i) Let $T : (X, || \cdot ||_1) \to (X, || \cdot ||_{\infty})$ be defined by $Tf(x) = \int_a^x f(t) dt$. Then

$$
||Tf||_{\infty} = \sup_{x \in [a,b]} |Tf(x)|
$$

\n
$$
\leq \sup_{x \in [a,b]} \int_{a}^{x} |f(t)| dt
$$

\n
$$
\leq \int_{a}^{b} |f(t)| dt = ||f||_{1}
$$

Therefore $||T|| \leq 1$. Furthermore, if we let $f : [a, b] \in \mathbb{R}$ to be $f(x) \equiv \frac{1}{b-a}$, then $||f||_1 = 1$ and

$$
Tf(x) = \frac{x - a}{b - a}
$$

We have $||Tf||_{\infty} = 1$. Hence $||T|| = 1$.

(ii) Let $T: (X, || \cdot ||_1) \to (X, || \cdot ||_1)$ be defined by $Tf(x) = \int_a^x f(t) dt$. Then

$$
||Tf||_1 = \int_a^b |Tf(t)| dt
$$

\n
$$
\leq \int_a^b \int_a^t |f(s)| ds dt
$$

\n
$$
\leq \int_a^b \int_a^b |f(s)| ds dt
$$

\n
$$
= (b-a)||f||_1
$$

Therefore $||T|| \leq b - a$. We claim that $||T|| = b - a$ by finding a sequence (f_n) in X with $||f_n||_1 = 1$ and $||Tf_n||_1 \rightarrow b - a$. Our f_n is defined by the followings:

It is easy to check that $||f_n||_1 = 1$ and $Tf_n(x) = 1$ on for $x \in [a + \frac{1}{n}]$ $\frac{1}{n}, b$. Thus $||Tf_n||_1 \ge b - (a + \frac{1}{n})$ $\frac{1}{n}$ for every *n*. Hence f_n is the desired sequence and $||T|| = b - a$.

Q2. (a) Let $M \subset X$ be a closed subspace, $\pi : X \to X/M$ be the canonical quotient map. Let B_X , $B_{X/M}$ be the **open** unit ball of X and X/M respectively. We claim that $\pi(B_X) = B_{X/M}$.

Suppose $x \in B_X$, then it is clear that $\pi(x) \in X_{X/M}$ because $||\pi|| \leq 1$. Suppose $\bar{x} \in B_{X/M}$. First, there exists some $x \in X$ such that $\pi(x) = \bar{x}$. Because $||\pi(x)|| < 1$, there exists some $m \in M$ such that $||x - m|| < 1$. So $x - m \in B_X$ and $\pi(x - m) = \overline{x}$. It follows that

$$
||\bar{F}|| = \sup_{\bar{x} \in B_{X/M}} \bar{F}(x) = \sup_{x \in B_X} \bar{F}(\pi(x)) = ||\bar{F} \circ \pi||
$$

(b) Let $a \notin M$. By the Hahn-Banach theorem, there exists $\overline{F} \in (X/M)^*$, $||\overline{F}|| = 1$, $\overline{F}(\pi(a)) =$ $||\pi(a)|| = d(a, M)$. The desired $f \in X^*$ is given by

$$
f(x) = \frac{1}{\|\pi(a)\|} \bar{F}(\pi(x))
$$

Q3. (i) Fix $x \in c_0$. Let $y \in \ell_1$. To show that $M_x(y) \in \ell_1$, we must show that

$$
\sum_{k=1}^{\infty} |x(k)y(k)| < \infty
$$

Observe that for each $N = 1, 2, \ldots$,

$$
\sum_{k=1}^{N} |x(k)y(k)| \le \left(\sup_{j \in \mathbb{N}} |x(j)|\right) \sum_{k=1}^{N} |y(k)| \le ||x||_{\infty} ||y||_{1}
$$

Therefore $\sum_{k=1}^{\infty} |x(k)y(k)| < \infty$. Hence M_x is well-defined.

(ii) In (i) we show that $||M_x(y)||_1 \leq ||x||_{\infty}||y||_1$, i.e. $||M_x|| \leq ||x||_{\infty}$. Let $e_k = (0, 0, \ldots, 0, 1, 0, \ldots)$ be the canonical basis vectors in ℓ_1 . We have $||e_k|| = 1$ for all k and $||M_x(e_k)|| = |x(k)|$. So $||M_x|| \ge |x(k)|$ for all k and Hence $||M_x|| \ge ||x||_{\infty}$.

(iii) The adjoint operator $M_x^*: \ell_\infty \to \ell_\infty$ satisfies

$$
M_x^*(\xi)(y) = \xi(M_x y)
$$

for all $\xi \in \ell_{\infty}$ and for all $y \in \ell_1$. Not $\xi(M_x y)$ is just a number in $\mathbb R$ (or $\mathbb C)$:

$$
\xi(M_x y) = \xi(1)x(1)y(1) + \xi(2)x(2)y(2) + \dots
$$

We see that $M^*_{x} \xi = (x(1)\xi(1), x(2)\xi(2), \dots) \in \ell_{\infty}$.

Q4. Let $x \in X$. By the Hahn-Banach theorem there exists $f \in B_{X^*}$ such that $f(x) = ||x||$. Since $B_{X^*} \subset \bigcup_{k=1}^n B(x_k^*, r)$, there exists k_0 such that $f \in B(x_{k_0}^*, r)$. Then

$$
||Tx||_{\infty} = \sup_{k} |x_{k}^{*}(x)|
$$

\n
$$
\geq |x_{k_{0}}^{*}(x)|
$$

\n
$$
\geq |f(x)| - |x_{k_{0}}^{*}(x) - f(x)|
$$

\n
$$
\geq ||x|| - ||x_{k_{0}}^{*} - f|| ||x||
$$

\n
$$
\geq (1 - r)||x||
$$