MMAT5010 2021 Assignment 9

Q1. The inner product of $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{C}^2$ is given by

$$(x,y) := x_1 \bar{y_1} + x_2 \bar{y_2}$$

where $\bar{y_i}$ denoted the complex conjugate of $y_i \in \mathbb{C}$. We compute $\langle Tx, y \rangle$:

$$\langle Tx, y \rangle = \frac{1}{\sqrt{2}} (x_1 \bar{y}_1 + i x_2 \bar{y}_1 + x_1 \bar{y}_2 - i x_2 \bar{y}_2)$$

= $x_1 (\frac{1}{\sqrt{2}} (\overline{y_1 + y_2})) + x_2 (\frac{1}{\sqrt{2}} (i \bar{y}_1 - i \bar{y}_2))$

By definition, $\langle Tx, y \rangle = \langle x, T^*y \rangle = \overline{\langle T^*y, x \rangle}$, we have

$$\langle T^*y, x \rangle = \bar{x_1}(\frac{1}{\sqrt{2}}(y_1 + y_2)) + \bar{x_2}(\frac{1}{\sqrt{2}}(\bar{i}y_1 - \bar{i}y_2))$$

= $\bar{x_1}(\frac{1}{\sqrt{2}}(y_1 + y_2)) + \bar{x_2}(\frac{1}{\sqrt{2}}(-iy_1 + iy_2))$

Hence $T^*y = \frac{1}{\sqrt{2}}(y_1 + y_2, iy_1 - iy_1)$. By direct calculation, it is checked that $TT^*y = T^*Ty = y$ for all $y \in \mathbb{C}^2$. Hence T is unitary.

Q2. Let $x \in T^*(M_2^{\perp})$, there exists $m_2 \in M_2^{\perp}$ with $T^*m_2 = x$. Let $m_1 \in M_1$, then

$$\langle m_1, x \rangle = \langle m_1, T^* m_2 \rangle$$

= $\langle T m_1, m_2 \rangle$
= 0

as $Tm_1 \in M_2$ and $m_2 \in M_2^{\perp}$.