MMAT5010 2021 Assignment 4

Q1. Recall that

$$|T|| = \sup\{||Tx|| : x \in \mathbb{R}^2, \, ||x|| = 1\}$$

Note if $x = (x_1, x_2) \in \mathbb{R}^2$, then $Tx = (x_1 + 2x_2, 3x_2)$. Thus

 $||Tx|| = \max(|x_1 + 2x_2|, |3x_2|) \le \max(|x_1| + 2|x_2|, 3|x_2|) \le 3||x||$

This shows $||T|| \leq 3$. We guess that ||T|| = 3, and to show it, we want to find $x \in \mathbb{R}^2$, ||x|| = 1 and ||Tx|| = 3. We may take x = (0, 1) or (1, 1).

Q2. To show T is discontinuous it needs to show that T is unbounded on the ball $B_{c_{00}}$. Let $e_k = (0, 0, \ldots, 0, 1, 0, \ldots)$ (k-th entry is 1, others are 0). Note that $e_k \in B_{c_{00}}$, and $Te_k = ke_k$, $||Te_k|| = k$. Hence ||T|| cannot be bounded on $B_{c_{00}}$.