MMAT5010 2021 Assignment 3

Q1. Because all norms are equivalent in finite dimensional spaces, it only needs to show A is a bounded linear operator from $(\mathbb{K}^n, || \cdot ||_{\infty})$ to itself, here $|| \cdot ||_{\infty}$ is the supremum norm.

For any $x \in \mathbb{K}^n$, write $x = (x_1, x_2, \dots, x_n)$. Let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (the *i*-th entry is 1, others are 0). Then

$$||Ax||_{\infty} = ||A(\sum_{i=1}^{n} x_i e_i)||_{\infty} \le |x_1| \, ||Ae_1|| + \dots + |x_n| \, ||Ae_n|| \le \left(n \max_{i=1,\dots,n} ||Ae_i||\right) \max_{i=1,\dots,n} |x_i|$$

Hence A is a bounded linear operator with $||A|| \leq n \max_{i=1,\dots,n} ||Ae_i||$.

Q2. Suppose (x_n) is a sequence in $\ell_1, x_n \to x \in \ell_1$ in $||\cdot||_1$ -norm. Then $x_n \to x$ in $||\cdot||_{\infty}$ -norm because $||\cdot||_{\infty} \leq ||\cdot||_1$, and therefore

$$||x_n - x||_{\infty} \le ||x - x_n||_1 \to 0 \text{ as } n \to \infty$$

The converse statement is: suppose (x_n) is a sequence in $\ell_1, x_n \to x \in \ell_1$ in $|| \cdot ||_{\infty}$ -norm, then $x_n \to x$ in $|| \cdot ||_1$ -norm.

This statement is disproved by finding $(x_n), x, x_n \to x$ in $|| \cdot ||_{\infty}$ but $x_n \not\to x$ in $|| \cdot ||_1$. Define

- $x_1 = (1, 0, 0, \dots) \in \ell_1$
- $x_2 = (\frac{1}{2}, \frac{1}{2}, 0, 0...) \in \ell_1$
- $x_3 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, \dots) \in \ell_1$
- . . .

Then $||x_n - 0||_{\infty} = \frac{1}{n} \to 0$, but $||x_n - 0||_1 = 1$ for all n.