
TUTORIAL 1

Ex. 1: lp-spaces (1 ≤ q ≤ ∞). Consider linear vector space:

X := Rn( or Cn) := {(x1, x2, · · · , xn), xi ∈ R( or C)}.
Define

|x|p =

(
n∑

i=1

|xi|p
)1/p

.

Show that (X, | · |p) is a complete normed space (Banach space).

Proof. To show (X, | · |p), we need: 1. to show (X, | · |p) is a normed space (by definition,
three laws.) 2. to show its completeness, that is, to show each Cauchy sequence has a limit
in (X, | · |p).

Step 1. We justify that lp is a normed space in this step. The only non-trivial thing
is to justify the triangular inequality for 1 ≤ p < ∞, which is a direct consequence of the
following Minkowski’s inequality:(

n∑
i=1

|xi + yi|p
)1/p

≤

(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

, (0.1)

for any x, y ∈ Rn or Cn.

Proof of (0.1):

n∑
i=1

|xi + yi|p ≤
n∑

i=1

|xi||xi + yi|p−1 +
n∑

i=1

|yi||xi + yi|p−1

≤

(
n∑

i=1

|xi|p
)1/p

·

(
n∑

i=1

|xi + yi|(p−1)p∗
)1/p∗

+

(
n∑

i=1

|yi|p
)1/p

·

(
n∑

i=1

|xi + yi|(p−1)p∗
)1/p∗

(
1

p
+

1

p∗
= 1)

≤ (|x|p + |y|p) |x + y|p−1p , (0.2)

where we have used the following Holder’s inequality

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p

·

(
n∑

i=1

|yi|p∗
)1/p∗

in the second line. Then for x + y 6= 0, (0.1) follows from dividing both side of (0.2) by
|x + y|p−1p . If x + y = 0, (0.1) is trivial.
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Step 2. Completeness. Take any Cauchy sequence {x(k) = (x
(k)
1 , x

(k)
2 , · · ·x(k)

n )}∞k=1. By
definition, for each ε > 0, there exists a positive constant N > 0, such that for any
k,m > N , one has (

n∑
j=1

|x(k)
j − x

(m)
j |p

)1/p

< ε, (0.3)

which implies that for each j, {x(k)
j }∞k=1 is Cauchy in R or C. By the completeness of

R or C, there exists xj, such that

lim
k→∞

x
(k)
j = xj.

Then by taking k →∞ in (0.3), one has, for any m > N , that(
n∑

j=1

|xj − x
(m)
j |p

)1/p

< ε.

This proves that {x(k)} converges to {x = (x1, · · · , xn)}. Therefore, (Rn, | · |p) is a complete
normed space. �

Ex. 2: X = C(K) (Real-value continuous functions), where K is a compact subset in
Rn. Define

‖f‖C(K) = sup
x∈K
|f(x)|.

Show that (X, ‖ · ‖C(K)) is a Banach space.

Proof. Step 1. Show that (X, ‖ · ‖C(K)) is a normed space. (Trivial)
Step 2. Justification of completeness. Let fn be a Cauchy sequence in X. By definition,
for each ε > 0, there exists a positive constant N > 0, such that for any n, k > N and
x ∈ K, it holds that

|fn(x)− fk(x)| < ε. (0.4)

Hence for each x ∈ K, fn(x) is Cauchy in R. Then similar as in Ex. 1, there exists a
function f(x), such that fn(x) converges to f(x) pointwisely in K. Since N is independent
of x, we can take k →∞ in (0.4). Hence, fn uniformly converges to f . Therefore, f ∈ C(K)
by compactness of K. This proves that (X, ‖ · ‖C(K)) is a Banach space. �

Ex. 3. Let K = [0, 1]. Define a norm ‖f‖1 :=
∫ 1

0
|f(x)|dx. Then (C[0, 1], ‖ · ‖1) is not

Banach.

Proof. To show (C[0, 1], ‖ ·‖1) is not Banach, we need to construct a counterexample. More
precisely0, we need to construct a Cauchy sequence that has no limit in (C[0, 1], ‖ · ‖1).
Consider the following sequence:

fn(x)|n≥2 =


0, 0 ≤ x ≤ 1/2,

n(x− 1/2), 1/2 < x ≤ 1/2 + 1/n,

1, 1/2 + 1/n < x ≤ 1.



TUTORIAL 1 3

Then

‖fn − fm‖1 ≤
1

2n
+

1

2m
→ 0,

as m,n→∞. Hence {fn}n≥2 is a Cauchy sequence in (C[0, 1], ‖ · ‖1). Let

f(x) =

{
0, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1.

Then we have

‖fn − f‖1 =

∫ 1
2
+ 1

n

1
2

(1− n(x− 1

2
))dx =

1

2n
→ 0,

as n→∞. Clearly f(x) /∈ C[0, 1]. Therefore, (C[0, 1], ‖ · ‖1) is not Banach. �


