Throughout the paper, let B_Z be the closed unit ball of a normed space Z and let $B(a, r) := \{x \in Z : ||x - a|| < r\}$ for $a \in Z$ and r > 0.

- 1. (10 points) Let X ba a normed space. Show that the following statements are equivalent.
 - (i) X is a Banach space.
 - (ii) Every absolutely convergent series in X is convergent, that is, if (x_n) is a sequence in X such that $\sum_{k=1}^{\infty} ||x_k|| < \infty$, then the limit $\lim_{n \to \infty} \sum_{k=1}^{n} x_k$ exists in X. (Hint: Using a known fact that a Cauchy sequence is convergent if and only if it has a

Proof: See lecture note: Prop 1.1

convergent subsequence.)

2. (i) (5 points): Let E be a normed space. Let 0 < r < 1. Suppose that $B_{E^*} \subseteq \bigcup_{k=1}^N B(x_k^*, r)$ for some finitely many elements x_1^*, \dots, x_N^* in B_E^* . Define a map $T : E \to c_0$ by

$$T(x) := (x_1^*(x), \dots, x_N^*(x), 0, 0, \dots) \in c_0$$

for $x \in E$. Show that $(1-r)||x|| \le ||Tx||_{\infty} \le ||x||$ for all $x \in E$.

(ii) (5 points): Let X be a normed space. Show that for any finite dimensional subspace E of X and for any $\eta > 0$, there exist a finite dimensional subspace F of c_0 and an isomorphism T from E onto F so that $||T|| ||T^{-1}|| < 1 + \eta$.

Proof: (i): Let $x \in E$. Then $|x_k^*(x)| \le ||x_k^*|| ||x|| \le ||x||$ for all k = 1, 2, ... and hence, we see that $||Tx||_{\infty} \le ||x||$.

On the other hand, Hahn-Banach separation tells us that ||x|| = |f(x)| for some $f \in X^*$ with ||f|| = 1. By the assumption, we have $||f - x_k^*|| < r$ for some k = 1, ..., N. This gives

$$|x|| = |f(x)| \le |(f - x_k^*)(x)| + |x_k^*(x)| \le r||x|| + ||Tx||_{\infty}.$$

So, we have $(1-r)||x|| \le ||Tx||_{\infty}$ as required.

(*ii*): Let 0 < r < 1. If E is of finite dimensional, then so is E^* . Then by the compactness of B_{E^*} , there exist finitely many elements $x_1^*, ..., x_N^*$ in B_{E^*} such that $B_{E^*} \subseteq \bigcup_{k=1}^N B(x_k^*, r)$. Let T be defined as in (*i*), we see that $||T|| \leq 1$. Moreover, if we let F := T(E), then T is an isomorphism from E onto F with $||T^{-1}|| \leq \frac{1}{1-r}$. Notice that $\lim_{r\to 0^+} \frac{1}{1-r} = 1^+$. Hence, for any $\eta > 0$, choose r > 0 such that $1 < \frac{1}{1-r} < 1 + \eta$ and thus, $||T^{-1}|| < 1 + \eta$ as desired. \Box

3. Let $1 . For each <math>x \in c_0$, define a linear operator M_x from ℓ^p to itself by

$$M_x(\xi)(k) := x(k)\xi(k)$$

for $\xi \in \ell^p$ and $k = 1, 2, \dots$

- (i) (5 points) Show that $||M_x|| = ||x||_{\infty}$ for any $x \in c_0$.
- (ii) (5 points) What is $M_x^* \xi^*$ for $x \in c_0$ and $\xi^* \in (\ell^p)^*$?

Proof: (i) Let $x \in c_0$. It is clear that $||M_x|| \leq ||x||_{\infty}$ because we always have $||M_x(\xi)||_p^p = \sum_{k=1}^{\infty} |x(k)\xi(k)|^p \leq ||x||_{\infty} ||\xi||_p^p$ for all $\xi \in \ell^p$. On the other hand, given any $\varepsilon > 0$, we have $||x||_{\infty} - \varepsilon < |x(N)|$ for some positive integer N. Let (e_k) be the canonical Schauder basis for ℓ^p . Then we see that $||x||_{\infty} - \varepsilon < |x(N)| = M_x(e_N) \leq ||M_x||$ for all $\varepsilon > 0$. This implies that $||x||_{\infty} \leq ||M_x||$. Part (i) follows.

(*ii*) Let $J : (\ell^p)^* \to \ell^q$ be the canonical isometric isomorphism, where 1/p + 1/q = 1. Now if we put $m_x(\eta)(k) := x(k)\eta(k)$ for $\eta \in \ell^q$ and k = 1, 2... Then we have the following commutative diagram:

$$\begin{pmatrix} \ell^p \end{pmatrix}^* \xrightarrow{J} \ell^q \\ \downarrow^{M^*_x} & \downarrow^{m_x} \\ (\ell^p)^* \xrightarrow{J} \ell^q$$

So, $M_x^* = m_x$ under the identification J.

End