Math 4010: Functional Analysis: Test 05 Nov 2018. 10:30-12:00 Answer ALL Questions

Throughout the paper, let B_Z be the closed unit ball of a normed space Z and let $B(a, r) :=$ ${x \in Z : ||x - a|| < r}$ for $a \in Z$ and $r > 0$.

- 1. (10 points) Let X ba a normed space. Show that the following statements are equivalent.
	- (i) X is a Banach space.
	- (ii) Every absolutely convergent series in X is convergent, that is, if (x_n) is a sequence in X such that $\sum_{k=1}^{\infty} ||x_k|| < \infty$, then the limit $\lim_{n \to \infty} \sum_{k=1}^{n}$ $k=1$ x_k exists in X. (Hint: Using a known fact that a Cauchy sequence is convergent if and only if it has a

convergent subsequence.)

Proof: See lecture note: Prop 1.1 \Box

2. (i) (5 points): Let E be a normed space. Let $0 < r < 1$. Suppose that $B_{E^*} \subseteq \bigcup_{k=1}^N B(x_k^*)$ $_{k}^{\ast},r)$ for some finitely many elements $x_1^*,...,x_N^*$ in B_E^* . Define a map $T: E \to c_0$ by

$$
T(x):=(x_1^*(x),...,x_N^*(x),0,0,....)\in c_0
$$

for $x \in E$. Show that $(1 - r) \|x\| \leq \|Tx\|_{\infty} \leq \|x\|$ for all $x \in E$.

(ii) (5 points): Let X be a normed space. Show that for any finite dimensional subspace E of X and for any $\eta > 0$, there exist a finite dimensional subspace F of c_0 and an isomorphism T from E onto F so that $||T|| ||T^{-1}|| < 1 + \eta$.

Proof: (*i*): Let $x \in E$. Then $|x_k^*|$ $||x_k^*(x)|| \leq ||x_k^*||$ $||k|| ||x|| \le ||x||$ for all $k = 1, 2, ...$ and hence, we see that $||Tx||_{\infty} \leq ||x||$.

On the other hand, Hahn-Banach separation tells us that $||x|| = |f(x)|$ for some $f \in X^*$ with $||f|| = 1$. By the assumption, we have $||f - x_k^*||$ $||k|| < r$ for some $k = 1, ..., N$. This gives

$$
||x|| = |f(x)| \le |(f - x_k^*)(x)| + |x_k^*(x)| \le r||x|| + ||Tx||_{\infty}.
$$

So, we have $(1 - r) \|x\| \leq \|Tx\|_{\infty}$ as required.

(ii): Let $0 < r < 1$. If E is of finite dimensional, then so is E^* . Then by the compactness of B_{E^*} , there exist finitely many elements $x_1^*,...,x_N^*$ in B_{E^*} such that $B_{E^*} \subseteq \bigcup_{k=1}^N B(x_k^*)$ $_{k}^{\ast},r).$ Let T be defined as in (i), we see that $||T|| \leq 1$. Moreover, if we let $F := T(E)$, then T is an isomorphism from E onto F with $||T^{-1}|| \le \frac{1}{1-r}$. Notice that $\lim_{r\to 0+} \frac{1}{1-r} = 1+$. Hence, for any $\eta > 0$, choose $r > 0$ such that $1 < \frac{1}{1-r} < 1+\eta$ and thus, $||T^{-1}|| < 1+\eta$ as desired. The proof is finished. \Box

3. Let $1 < p < \infty$. For each $x \in c_0$, define a linear operator M_x from ℓ^p to itself by

$$
M_x(\xi)(k) := x(k)\xi(k)
$$

for $\xi \in \ell^p$ and $k = 1, 2, \ldots$

- (i) (5 points) Show that $||M_x|| = ||x||_{\infty}$ for any $x \in c_0$.
- (ii) (5 points) What is $M_x^* \xi^*$ for $x \in c_0$ and $\xi^* \in (\ell^p)^*$?

Proof: (i) Let $x \in c_0$. It is clear that $||M_x|| \le ||x||_{\infty}$ because we always have $||M_x(\xi)||_p^p =$ $\sum_{k=1}^{\infty} |x(k)\xi(k)|^p \le ||x||_{\infty} ||\xi||_p^p$ for all $\xi \in \ell^p$. On the other hand, given any $\varepsilon > 0$, we have $||x||_{\infty} - \varepsilon < |x(N)|$ for some positive integer N. Let (e_k) be the canonical Schauder basis for ℓ^p . Then we see that $||x||_{\infty} - \varepsilon < |x(N)| = M_x(e_N) \le ||M_x||$ for all $\varepsilon > 0$. This implies that $||x||_{\infty}$ ≤ $||M_x||$. Part (i) follows.

(*ii*) Let $J: (\ell^p)^* \to \ell^q$ be the canonical isometric isomorphism, where $1/p + 1/q = 1$. Now if we put $m_x(\eta)(k) := x(k)\eta(k)$ for $\eta \in \ell^q$ and $k = 1, 2,...$ Then we have the following commutative diagram:

$$
(\ell^p)^* \xrightarrow{J} \ell^q
$$

\n
$$
\downarrow M_x^* \qquad \downarrow m_x
$$

\n
$$
(\ell^p)^* \xrightarrow{J} \ell^q
$$

So, $M_x^* = m_x$ under the identification J.

End