
Tutorial 5 MATH2050A Mathematical Analysis I 10/10/2019

Review on Week 5

Cauchy Sequences

The definition of a Cauchy sequence is similar to the definition of a convergent sequence.

Definition (c.f. Definition 3.5.1). A sequence of real numbers (xn) is said to be a Cauchy
sequence if for every ε > 0, there exist a natural number N such that

|xn − xm| < ε, ∀n,m ≥ N.

Example 1 (c.f. Example 3.5.2). (1/n) is a Cauchy sequence.

Solution. We need to show that for every ε > 0, there exists N ∈ N such that∣∣∣∣ 1n − 1

m

∣∣∣∣ < ε, ∀n,m ≥ N.

Note that if n,m ≥ N ,∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+

∣∣∣∣− 1

m

∣∣∣∣ =
1

n
+

1

m
≤ 1

N
+

1

N
=

2

N
.

Let ε > 0. By Archimedean Property, there exists N ∈ N such that 1/N < ε/2. Then
for any n,m ≥ N , ∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 2

N
< ε.

Example 2. (1− (−1)n) is not a Cauchy sequence.

Solution. We need to show that there exists ε > 0 such that for any N ∈ N, there exists
n,m ≥ N such that

|(1− (−1)n)− (1− (−1)m)| ≥ ε.

Note that the sequence is alternating between 0 and 2, hence any successive terms have
difference 2. Take ε = 2 > 0. Then for any N ∈ N, take n = N + 1 and m = N . Then

|(1− (−1)n)− (1− (−1)m)| = 2 ≥ ε.

The following lemmas tell us some relations between convergent and Cauchy sequences.

Lemma (c.f. Lemma 3.5.3). A convergent sequence of real numbers is a Cauchy sequence.

Lemma (c.f. Lemma 3.5.4). A Cauchy sequence of real numbers is bounded.

The following theorem tell us that Cauchy sequences and convergent sequences are
actually equivalent! This is also a main theorem of this course and is due to Bolzano-
Weierstrass Theorem. They all come from the Completeness Property of R.

Cauchy Convergence Criterion (c.f. 3.5.5). A sequence of real numbers is convergent if
and only if it is a Cauchy sequence.

Remark. By Lemma 3.5.3, a sequence being Cauchy is a formally weaker condition than
being convergent. It is easier for us to check whether or not a sequence is Cauchy than
checking its convergence because we don’t need to specify the limit.
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Applications

Let’s present two examples to show that the Cauchy Convergence Criterion is useful.

Example 3 (c.f. Example 3.5.6(b)). The following sequence is convergent:(
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n+1

n!

)
Solution. We cannot prove this by definition in a elementary way because the limit is 1−1/e.
Using Cauchy Convergence Criterion, it suffices to show that this sequence is Cauchy.

Let yn be the n-th term of this sequence. Note that if n ≥ m ≥ N ,

|yn − ym| =
∣∣∣∣(−1)m+2

(m + 1)!
+

(−1)m+3

(m + 2)!
+ · · ·+ (−1)n+1

n!

∣∣∣∣
≤ 1

(m + 1)!
+

1

(m + 2)!
+ · · ·+ 1

n!

≤ 1

2m
+

1

2m+1
+ · · ·+ 1

2n−1

<
1

2m

(
1 +

1

2
+

1

4
+ · · ·

)
≤ 1

2N
· 2 =

1

2N−1

Let ε > 0. By Archimedean Property (How?), choose N such that 1/2N−1 < ε. Then

|yn − ym| <
1

2N−1 < ε, ∀n,m ≥ N.

Therefore (yn) is a Cauchy sequence.

Example 4 (c.f. Example 3.5.6(c)). The harmonic series (1 + 1/2 + 1/3 + · · · ) diverges.

Solution. Again, it is tedious for us to check by definition that the series does not converge
to any real numbers. Hence we simply check that this sequence is not Cauchy.

Let hn be the n-th term of this sequence. For n ≥ m, note that

|hn − hm| =
1

m + 1
+

1

m + 2
+ · · ·+ 1

n
≥ n−m

n
= 1− m

n
.

Hence if we take ε = 1/2 > 0, for any N ∈ N, take n = 2N and m = N . Then

|hn − hm| ≥ 1− m

n
= 1/2 = ε.

Quiz 1 on Next Thursday 17/10

Please be reminded that there will be a quiz next week. It will start at 9:30 a.m., during
lecture. Please be punctual.
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Exercises

Question 1 (c.f. Section 3.5, Ex.5). If xn =
√
n, show that (xn) satisfies lim |xn+1−xn| = 0,

but it is not a Cauchy sequence.

Solution. Direct calculation gives

lim
n→∞

|xn+1 − xn| = lim
n→∞

|
√
n + 1−

√
n|

= lim
n→∞

(
√
n + 1−

√
n) ·
√
n + 1 +

√
n√

n + 1 +
√
n

= lim
n→∞

(n + 1)− n√
n + 1 +

√
n

= lim
n→∞

1√
n + 1 +

√
n

= 0

To show that this sequence is not Cauchy, take ε = 1 > 0. For any N ∈ N, take n = (N +1)2

and m = N2, then

|xn − xm| = |
√

(N + 1)2 −
√
N2| = |N + 1−N | = 1 ≥ ε.

Remark. This exercise tells us that we cannot look at the limit of the difference between
successive terms only. We need to consider the difference between every terms after some
large numbers N . However, the next exercise tell us that we can do so if we impose a stronger
condition on the difference between successive terms.

Question 2 (c.f. Section 3.4, Ex.9). If 0 < r < 1 and |xn+1 − xn| < rn for all n ∈ N, show
that (xn) is a Cauchy sequence.

Solution. Note that by triangle inequality, for n ≥ m,

|xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|.

Hence for any n ≥ m ≥ N ,

|xn − xm| ≤ rn−1 + rn−2 + · · ·+ rm

< rm · (1 + r + r2 + · · · )

< rN · 1

1− r

Let ε > 0. We want to find N ∈ N by Archimedean Property such that

rN · 1

1− r
< ε.

Solving the inequality for N yields N >
ln ε + ln(1− r)

ln r
. We are done after we choose such

N by Archimedean Property.
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Question 3 (c.f. Section 3.4, Ex.10). If x1 < x2 are arbitrary real numbers and

xn =
1

2
(xn−2 + xn−1) for n > 2,

show that (xn) is convergent. What is its limit?

Solution. To show that the sequence is convergent, we show that it is Cauchy. Note that
since the next term is constructed by averaging,

|xn+1 − xn| =
x2 − x1

2n−1 , ∀n ∈ N.

(Prove this by induction!) Hence for n ≥ m ≥ N ,

|xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|

=
x2 − x1

2n−2 +
x2 − x1

2n−3 + · · ·+ x2 − x1

2m−1

<
x2 − x1

2m−1

(
1 +

1

2
+

1

4
+ · · ·

)
≤ x2 − x1

2N−1 · 2

=
x2 − x1

2N−2

Let ε > 0. Then by Archimedean Property, choose N ∈ N such that

x2 − x1

2N−2 < ε.

Then we can show that (xn) is Cauchy and hence convergent.
To find the limit of this sequence, note that we cannot find the limit by solving

x =
1

2
(x + x).

Instead, since the sequence is convergent, all of its subsequence will also converger to the
same limit. In particular, we fing the general term of the subsequence x2n+1. Observe that

x2n+1 = x1 +
x2 − x1

2

(
1 +

1

4
+

1

16
+ · · ·+ 1

4n−1

)
= x1 +

x2 − x1

2

n−1∑
k=0

1

4k
, ∀n ∈ N.

(Prove this by induction!) Hence we can calculate the limit of (xn) by

lim
n→∞

(xn) = lim
n→∞

(x2n+1) = x1 +
x2 − x1

2

∞∑
k=0

1

4k
=

1

3
x1 +

2

3
x2.
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