General Information

- Textbook: *Introduction to Real Analysis* by Robert G. Bartle, Donald R. Sherbert. (Try to google the title of the textbook for MORE information!)
- The course MATH2060 Mathematical Analysis II will also use this textbook.
- I am the tutor of this section. You may call me **Ernest**. My office is located at **LSB G06** and my office hour for this course is **Thursday 10:30-12:30**. You may come to me during this session if you need any help. My email address is **yl-fan@math.cuhk.edu.hk**. You are welcomed to send me an email if you cannot find me.
- Please visit the course web-page at https://www.math.cuhk.edu.hk/course/1920/ math2050a frequently to get the most updated information. It shall contain the information for the Homework and Quizzes, as well as lecture notes and tutorial notes.

Review on Week 1

As an introduction to the real number system \mathbb{R} , we need some definitions.

Upper/Lower Bounds, Supremum/Infimum

Definition (c.f. Definition 2.3.1). Let X be a **non-empty** subset of \mathbb{R} .

- A number $u \in \mathbb{R}$ is said to be an *upper bound* of X if $x \leq u$ for all $x \in X$.
- A number $l \in \mathbb{R}$ is said to be a *lower bound* of X if $x \ge l$ for all $x \in X$.
- X is said to be *bounded above* if it has an upper bound.
- X is said to be *bounded below* if it has a lower bound.
- X is said to be *bounded* if it is both bounded above and bounded below.
- X is said to be unbounded if it is not bounded.

Definition (c.f. Definition 2.3.2). Let X be a **non-empty** subset of \mathbb{R} .

- The supremum of X, denoted by $\sup X$, is defined as the least upper bound of X. i.e. $\sup X \ge x$ for all $x \in X$ and $\sup X \le u$ whenever u is an upper bound of X.
- The *infimum* of X, denoted by inf X, is defined as the greatest lower bound of X.
 i.e. inf X ≤ x for all x ∈ X and inf X ≥ l whenever l is a lower bound of X.

The following lemma is also useful to determine whether an upper bound u of a nonempty subset X of \mathbb{R} is a supremum. (Can you formulate a lemma corresponding to the case of infimum?) **Lemma** (c.f. Lemma 2.3.3 and Lemma 2.3.4). Let u be an upper bound of a non-empty subset X of \mathbb{R} . The following statements are equivalent:

- (i) u is the supremum of X, i.e. $u = \sup X$.
- (ii) If v < u, then there exists $x \in X$ such that v < x.
- (iii) For every $\varepsilon > 0$, there exists $x \in X$ such that $u \varepsilon < x$.

The Completeness Property

The most important property of the real number system \mathbb{R} is the following, which we called the **the completeness property** or **the axiom of completeness**.

The Completeness Property of \mathbb{R} (c.f. 2.3.6). *Every bounded above non-empty subset of* \mathbb{R} *has a supremum in* \mathbb{R} .

One of its application is to show the **Archimedean Property**, which states that the set of natural numbers is unbounded.

Archimedean Property (c.f. 2.4.3). If $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $x \leq n$.

This yields the following useful corollary (Especially when we do exercises!):

Corollary (c.f. Corollary 2.4.5). If $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $0 < 1/n < \varepsilon$.

Exercises

Question 1. Determine the supremum and infimum of the following sets (if such exist):

(a) $X_1 = (0, 1]$	(c) $X_3 = [0,1) \cup \{2\}$	(e) $X_5 = \mathbb{R} \setminus [-1, 1]$
(b) $X_2 = \mathbb{N}$	(d) $X_4 = (0,1) \cap \mathbb{Q}$	(f) $X_6 = \{n + 1/n : n \in \mathbb{N}\}$

Solution. As a warm up exercise, no proofs are needed. Try to visualize the given sets.

(a)
$$\inf X_1 = 0$$
; $\sup X_1 = 1$.

- (b) $\inf X_2 = 1$; $\sup X_2$ does not exist.
- (c) $\inf X_3 = 0$; $\sup X_3 = 2$.
- (d) $\inf X_4 = 0$; $\sup X_4 = 1$.
- (e) $\inf X_5$ does not exist; $\sup X_5$ does not exist.
- (f) $\inf X_6 = 2$; $\sup X_6$ does not exist.

Question 2 (c.f. Section 2.4, Ex.1). Show that $\sup\{1 - 1/n : n \in \mathbb{N}\} = 1$.

Solution. We need to show that (i) 1 is an upper bound of the set and (ii) if u is an upper bound, then $1 \le u$.

To show that $1 - 1/n \le 1$ for all $n \in \mathbb{N}$, let $n \in \mathbb{N}$. Note that $1/n \ge 0$. hence $1 - 1/n \le 1 - 0 = 1$.

To show that 1 is the least upper bound, suppose on a contrary that there is an upper bound $u \in \mathbb{R}$ of the set $\{1-1/n : n \in \mathbb{N}\}$ such that u < 1. Since 1-u > 0, by **Archimedean Property** (Corollary 2.4.5), there exists $n \in \mathbb{N}$ such that 0 < 1/n < 1 - u. It follows that

$$u < 1 - \frac{1}{n},$$

contradict the face that u is an upper bound. Therefore 1 must be the least upper bound.

Remark. Homework 1: Section 2.4, Q2 is similar.

Question 3 (c.f. Section 2.4, Ex.7). Let A, B be bounded non-empty subsets of \mathbb{R} , and let $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup B$ and $\inf(A + B) = \inf A + \inf B$.

Solution. I shall prove the case of infimum and leave case of supremum as an exercise, the arguments are similar. Also, note that the equality can be shown by showing the " \geq " case and the " \leq " case.

To show $\inf(A+B) \ge \inf A + \inf B$, let $a \in A$ and $b \in B$. Since $\inf A$ and $\inf B$ are lower bounds of A and B respectively. Hence $a \ge \inf A$ and $b \ge \inf B$. Therefore

$$a+b \ge \inf A + \inf B.$$

Since $a \in A$ and $b \in B$ are arbitrary, $\inf A + \inf B$ is a lower bound of A + B. It follows that $\inf(A + B) \ge \inf A + \inf B$.

To show $\inf(A+B) \leq \inf A + \inf B$, let $a \in A$ and $b \in B$. Since $\inf(A+B)$ is a lower bound of A+B, we have $\inf(A+B) \leq a+b$. Then

$$\inf(A+B) - a \le b.$$

Since $b \in B$ is arbitrary, $\inf(A + B) - a$ is a lower bound of B. Therefore

$$\inf(A+B) - a \le \inf B.$$

We now have

$$\inf(A+B) - \inf B \le a.$$

Since $a \in A$ is arbitrary, $\inf(A + B) - \inf B$ is a lower bound of A. Therefore

$$\inf(A+B) - \inf B \le \inf A.$$

Finally we arrived at the desired conclusion

$$\inf(A+B) \le \inf A + \inf B.$$

Remark. Homework 1: Section 2.4, Q4 is similar.

Prepared by Ernest Fan