THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2019) Suggested Solution of Homework 2: p.61: 5(a), (c), 11; p.70: 9

5. Use the definition of the limit of a sequence to establish the following limits.

(3 marks each)

(a) $\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} \right) = 0,$ (c) $\lim_{n \to \infty} \left(\frac{3n + 1}{2n + 5} \right) = \frac{3}{2}.$

Solution:

(a) Notice that

$$\left|\frac{n}{n^2+1} - 0\right| = \frac{n}{n^2+1} \le \frac{n}{n^2} = \frac{1}{n}.$$

Let $\epsilon > 0$. By Archimedean property, there is some $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. For any $n \ge N$, we have

$$\left|\frac{n}{n^2+1} - 0\right| \le \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

By the definition of the limit of a sequence, we have $\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} \right) = 0.$

(c) Notice that

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| = \left|\frac{(6n+2) - (6n+15)}{2(2n+5)}\right| = \frac{13}{2}\frac{1}{2n+5} \le \frac{13}{2(2n)} = \frac{13}{4n}.$$

Let $\epsilon > 0$. By Archimedean property, there is some $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{4\epsilon}{13}$. Now if $n \ge N$, we have

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| \le \frac{13}{4n} \le \frac{13}{4N} < \epsilon.$$
$$3n+1 \qquad 3$$

This shows that $\lim_{n \to \infty} \left(\frac{3n+1}{2n+5} \right) = \frac{3}{2}.$

11. Show that $\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0.$

Solution:

Notice that

$$\left|\frac{1}{n} - \frac{1}{n+1} - 0\right| = \frac{1}{n(n+1)} = \frac{1}{n^2 + n} \le \frac{1}{n}$$

Let $\epsilon > 0$. By Archimedean property, there is some $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. For any $n \ge N$, we have

$$\left|\frac{1}{n} - \frac{1}{n+1} - 0\right| \le \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

$$\frac{1}{n} - \frac{1}{n+1} = 0.$$

This shows that $\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0.$

9. Let $y_n := \sqrt{n+1} - \sqrt{n}$ for $n \in \mathbb{N}$. Show that $(\sqrt{n}y_n)$ converges. Find the limit.

(4 marks)

Solution:

Notice that

$$y_n = \sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \left(\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}\right) = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

hence

$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} \le \sqrt{n}y_n \le \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n}} = \frac{1}{2}$$

Let
$$b_n := \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} = \frac{1}{2}\sqrt{\frac{n}{n+1}} = \frac{1}{2}\sqrt{1 - \frac{1}{n+1}}.$$

By **3.2.3 Theorem (a), 3.2.10 Theorem** and the result $\lim_{n\to\infty} \frac{1}{n} = 0$, we obtain $\lim_{n\to\infty} b_n = \frac{1}{2}$. By squeeze theorem, we conclude that $(\sqrt{n}y_n)$ converges to $\frac{1}{2}$.