THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2019) Suggested Solution of Homework 1: p.44: 2, 4, 5, 3

2. If $S := \{1/n - 1/m : n, m \in \mathbb{N}\}$, find inf S and sup S. (3 marks)

Solution:

We propose that $\inf S = -1$ and $\sup S = 1$. First we show that $\inf S = -1$.

-1 is a lower bound for the set S: for every $n \in \mathbb{N}$, $1/n \ge 0$. For every $m \in \mathbb{N}$, $1/m \le 1$. Combining these two inequalities, we have $1/n - 1/m \ge -1$ for every $n, m \in \mathbb{N}$.

Let $\epsilon > 0$. It suffices to show that $-1 + \epsilon$ fails to be a lower bound of S: By Archimedean property, there is some $n_0 \in \mathbb{N}$ such that $1/n_0 < \epsilon$. Taking m = 1, we have $1/n_0 - 1 < \epsilon - 1$. But $1/n_0 - 1$ is an element in S. It shows that $-1 + \epsilon$ is not a lower bound of S.

Notice that $(-S) = \{-1/n + 1/m : n, m \in \mathbb{N}\} = S$. We have $\sup(S) = \sup(-S) = -\inf(S) = 1$.

4. Let S be a nonempty bounded set in \mathbb{R} . (3 marks)

(a) Let a > 0, and let $aS := \{as : s \in S\}$. Prove that

 $\inf(aS) = a \inf S, \quad \sup(aS) = a \sup S.$

(b) Let b < 0 and let $bS = \{bs : s \in S\}$. Prove that

$$\inf(bS) = b \sup S, \quad \sup(bS) = b \inf S.$$

Solution:

(a) We will show that $a \inf S$ is a lower bound for the set aS. This will give the inequality $\inf(aS) \ge a \inf S$: fix any $s \in S$. Since $\inf S$ is a lower bound of S, we have $s \ge \inf S$ and hence $as \ge a \inf S$ for every $s \in S$.

On the other hand, if we replace S by aS and replace a by 1/a in the inequality $\inf(aS) \ge a \inf S$, we obtain

$$\inf\left(\frac{1}{a}(aS)\right) \ge \frac{1}{a}\inf(aS)$$

i.e. $\inf S \ge \frac{1}{a} \inf(aS)$, and $a \inf S \ge \inf(aS)$. We have shown that $\inf(aS) = a \inf S$. Replace S by -S in the equality $\inf(aS) = a \inf S$, we have $\inf(-(aS)) = a \inf(-S)$ and then $-\sup(aS) = -a \sup S$. This shows (a).

(b) Note that (-b) > 0. From (a), we have $\inf(-bS) = (-b) \inf S$ and $\sup(-bS) = (-b) \sup S$. It follows that $-\sup(bS) = -b \inf S$ and $-\inf(bS) = -b \sup S$.

5. Let S be a set of nonnegative real numbers that is bounded above and let $T := \{x^2 : x \in S\}$. Prove that if $u = \sup S$, then $u^2 = \sup T$. Give an example that shows the conclusion may be false if the restriction against negative numbers is removed.

(4 marks, 1 mark for an example)

Solution:

First, we show that u^2 is an upper bound of T: let $x \in S$. Since supremum is an upper bound, we have $u \ge x$. Note that $x \in S$ is nonnegative. We have $u + x \ge 0$ and hence $u^2 - x^2 = (u - x)(u + x) \ge 0$ for every $x \in S$.

Suppose α is an upper bound of T, hence $\alpha \ge 0$. We argue that $\alpha \ge u^2$: it is trivial if $S = \{0\}$. In this case, $T = \{0\}$. Suppose $S \ne \{0\}$. There is $x \in S$ such that x > 0. $\alpha \ge x^2$ because α is an upper bound of T. Recall that there is a number $\sqrt{a} \ge 0$ such that $(\sqrt{a})^2 = \alpha$. We have $(\sqrt{\alpha} - x)(\sqrt{\alpha} + x) = \alpha^2 - x \ge 0$. Since $\sqrt{\alpha} + x > 0$, by multiplying its multiplicative inverse, we have $\sqrt{\alpha} - x \ge 0$. This holds for every positive element x in S, and thus $\sqrt{\alpha}$ is an upper bound of S. It follows that $\sqrt{\alpha} \ge u$. Both $\sqrt{\alpha}$ and u are nonnegative. The inequality stills holds after taking square on both sides.

The conclusion fails if the restriction against negative numbers is removed. For example, we take $S = \{-1, 0\}$. In this case, u = 0 and $T = \{1, 0\}$. We have $\sup T = 1$, but $u^2 = 0$.

The solution have been complete. For the part showing that u^2 is the least among all upper bounds of T, one may argue that $u^2 - \epsilon$ fails to be an upper bound of Tfor every small $\epsilon > 0$. The following can be taken as a substitute for the second paragraph: we still assume that $S \neq \{0\}$, hence u > 0. Note that

$$u^2 - \epsilon \le \left(u - \frac{\epsilon}{2u}\right)^2$$

By the assumption $u = \sup S$, there is some $x_0 \in S$ such that $u - \frac{\epsilon}{2u} < x_0$. Whenever $\epsilon > 0$ is small enough, say $\epsilon < 2u^2$, the inequality preserves after taking square. This together with the inequality $u^2 - \epsilon \leq \left(u - \frac{\epsilon}{2u}\right)^2$ give us $u^2 - \epsilon < x_0^2$, hence $u^2 - \epsilon$ is not an upper bound of T.

3. Let $S \subseteq \mathbb{R}$ be nonempty. Prove that if a number u in \mathbb{R} has the properties: (i) for every $n \in \mathbb{N}$, the number u - 1/n is not an upper bound of S, and (ii) for every number $n \in \mathbb{N}$, the number u + 1/n is an upper bound of S, then $u = \sup S$. (3 marks)

Solution:

We first show that u is an upper bound, i.e. $u \ge s$ for every $s \in S$: suppose not, there is some $s_0 \in S$ such that $s_0 > u$. By Archimedean property, there is some $n \in \mathbb{N}$ such that $1/n < s_0 - u$. Now, u + 1/n is not an upper bound of S and contradicts to (ii).

Next, we show that u is the least among all upper bounds of S: let $\epsilon > 0$, by Archimedean property, there is some $n \in \mathbb{N}$ with $1/n < \epsilon$. By property (i), u - 1/nis not an upper bound of S, and hence a smaller number $u - \epsilon$ cannot be an upper bound of S. This shows that $u = \sup S$.