MATH2050A,B: Analysis I: Complementary Exercise December 2019

1. Let $A \subset \mathbb{R}$ be bounded above but not below. Suppose A has the property that

(*) if
$$a_1 < x < a_2$$
 and $a_1, a_2 \in A$ then $x \in A$.

Show that A is an interval.

2. Let a > 0, and

$$A := \{x > 0 : a \leqslant x^2\};$$

$$f(x) := \frac{1}{2}(x + \frac{a}{x}) \quad \forall x \in A.$$

Let $x_1 \in A$ and $x_{n+1} := f(x_n)$ for all nature number n. Show that $f(x) \in A$ and $f(x) \leq x$ for all $x \in A$, and further that the sequence (x_n) converges with limit $z = \sqrt{a}$, that is z > 0 and $z^2 = a$.

(You may use the Monotone Convergence Theorem for sequences and the computation rules for limits)

3. (a) Use $\varepsilon - \delta$ terminology to show for c > 0 that

$$\lim_{x \to c} \sqrt{x} = \sqrt{c}.$$

(b) Compute the limit

$$\lim_{x \to 0} \frac{\sqrt{1+3x} - \sqrt{1+2x}}{x+2x^2}$$

4. Use $\varepsilon - \delta$ terminology show that

(a)
$$\lim_{x \to 1} \frac{x^2 + 2}{x^2 - 2} = -3$$

- (b) Let f_1, f_2 be real-valued functions on $A \subset \mathbb{R}$ and x_0 be a cluster point with respect to A such that $\lim_{x \to x_0} f_i(x) = \ell_i \in \mathbb{R}$ (i = 1, 2). Suppose that $f_2(x) \neq 0$ for all $x \in A$. Show that $\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \frac{\ell_1}{\ell_2}$.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function (say with period $p : f(x+p) = f(x) \ \forall x \in \mathbb{R}$). Show that
 - (a) f attains its maximum value.
 - (b) f is uniformly continuous on ℝ.(You may apply the Bolzano-Weierstrass Theorem).
- 6. Let f be a \mathbb{R} -valued function defined on \mathbb{R} and let A be a countable dense subset of \mathbb{R} . Assume that the function f is continuous on A. Put

 $D := \{ x \in \mathbb{R} \setminus A : f \text{ is continuous at } x \}.$

Prove or disprove the following cases.

- (i) The set D is nonempty.
- (ii) The set D is dense in \mathbb{R} .
- 7. Let f be a continuous \mathbb{R} -valued function defined on \mathbb{R} . Assume that the limits $L' := \lim_{x \to -\infty} f(x)$ and $L := \lim_{x \to +\infty} f(x)$ both exist. Consider the following cases:

$$L' < L$$
 ; $L' > L$ and $L = L'$.

Prove or disprove the following statements for the above cases:

- (i) f attains at least one of its maximal values or minimum value.
- (ii) f attains its maximal values and its minimum value.
- (iii f is uniformly continuous on \mathbb{R} .