
MATH 2050A: Mathematical Analysis I (Appendix)

(2019 1st term)

1 Compact subsets of R

Definition 1.1 Let A be a subset of R. A point z ∈ R is called a limit point of A if for any
δ > 0, there is an element a ∈ A such that 0 < |z − a| < δ.
Put D(A) the set of all limit points of A.

Example 1.2 (i) D([a, b]) = D((a, b)) = [a, b].

(ii) D([0, 1] ∪ {2}) = [0, 1].

(iii) D(N) = ∅.

(iv) D({a}) = ∅ for any a ∈ R.

Definition 1.3 A subset A of R is said to be closed in R if D(A) ⊆ A.

Example 1.4 (i) {a}; [a, b]; [0, 1] ∪ {2}; N and R all are closed subsets of R.

(ii) (a, b) and Q are not closed.

The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 1.5 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

(iii) If (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Definition 1.6 Let A be a subset of R. A is said to be compact (more precise, sequentially
compact) if every sequence (xn) in A has a convergent subsequence (xnk

) with limk xnk
∈ A.

Example 1.7 (i) Every closed and bounded interval is compact.
In fact, if (xn) is any sequence in a closed and bounded interval [a, b], then (xn) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (xn) has a convergent
subsequence (xnk

). Notice that since a ≤ xnk
≤ b for all k, then a ≤ limk xnk

≤ b, and
thus limk xnk

∈ [a, b]. Therefore A is compact.
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(ii) (0, 1] is not compact. In fact, if we consider xn = 1/n, then (xn) is a sequence in (0, 1]
but it has no convergent subsequence with the limit sitting in (0, 1].

Theorem 1.8 A subset A of R is compact if and only if A is closed and bounded.

2 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f : A → R a function defined
on A.

Proposition 2.1 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x) : x ∈ A} and f(b) = min{f(x) : x ∈ A}.

Proof: By considering the function −f on A, it needs to show that f(c) = max{f(x) : x ∈ A}
for some c ∈ A.
We first claim that f is bounded on A, that is, there is M > 0 such that |f(x)| ≤ M for
all x ∈ A. Suppose not. Then for each n ∈ N, we can find an ∈ A such that |f(an)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem 1.8). So, (an)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ank

) of (an). Put a = limk ank
. Since A is closed and f is continuous, a ∈ A,

from this, it follows that f(a) = limk f(ank
). It is absurd because nk < |f(ank

)| → |f(a)| for
all k and nk → ∞. So f must be bounded. So L := sup{f(x) : x ∈ A} must exist by the
Axiom of Completeness.
It remains to show that there is a point c ∈ A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (xn) in A such that limn f(xn) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A.

If we put c := limk xnk
∈ A, then f(c) = limk f(xnk

) = L as desired. The proof is finished.
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Proposition 2.2 If f : A→ R is continuous and A is compact, then the image f(A) is com-
pact. Furthermore, if f is injective, then the inverse map f−1 : f(A)→ A is also continuous.

Proof: Recall the fact that a subset of R is closed if and only if it is closed and bounded (see
Theorem 1.8). So, it needs to show that f(A) is a closed and bounded set. We first notice
that f(A) is bounded by Proposition 2.1. It remains to show that f(A) is a closed subset of
R. Let y ∈ f(A). Then there is a sequence (xn) in A such that lim f(xn) = y. Then by the
compactness of A, there is a convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A.

Since f is continuous, it follows that y = limk f(xnk
) = f(limk xnk

) ∈ f(A) and thus f(A) is
closed.
Concerning the last assertion, let B = f(A) and g = f−1 : B → A. Suppose that g is not
continuous at some b ∈ B. Put a = g(b) ∈ A. Then there are η > 0 and a sequence (yn)
in B such that lim yn = b but |g(yn) − g(b)| ≥ η for all n. Let xn := g(yn) ∈ A. So, by the
compactness of A, there is a convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Let
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a′ = limk xnk
. Then we have f(a′) = limk f(xnk

) = limk ynk
= b. On the other hand, since

|g(yn)− g(b)| ≥ η for all n, we see that

|xnk
− a| = |g(ynk

)− g(b)| ≥ η > 0

for all k and hence |a′ − a| > 0. This implies that a 6= a′ but f(a′) = b = f(a). It contradicts
to f being injective.
The proof is finished. 2

Remark 2.3 The assumption of the compactness in the last assertion of Proposition 2.2 is
essential. For example, consider A = [0, 1) ∪ [2, 3] and define f : A→ R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ [2, 3].

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but f−1 : [0, 2] → A is
not continuous at y = 1.

Example 2.4 By Proposition 2.2, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0, 1).

Definition 2.5 A function f : A→ R is said to be uniformly continuous on A if for any ε > 0,
there is δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ A with |x− y| < δ.

Remark 2.6 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0, 1] → R
defined by f(x) := 1/x. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0, 1]. Notice that f is not uniformly continuous on A means that

there is ε > 0 such that for any δ > 0, there are x, y ∈ A with |x− y| < δ but |f(x)− f(y)| ≥ ε.

Notice that 1/x→∞ as x→ 0+. So if we let ε = 1, then for any δ > 0, we choose n ∈ N
such that 1/n < δ and thus we have |1/2n − 1/n| = 1/2n < δ but |f(1/n) − f(1/2n)| = n >
1 = ε. Therefore, f is not uniformly continuous on (0, 1].

Example 2.7 Let 0 < a < 1. Define f(x) = 1/x for x ∈ [a, 1]. Then f is uniformly continuous
on [a, 1]. In fact for x, y ∈ [a, 1], we have

|f(x)− f(y)| = |1
x
− 1

y
| = |x− y|

xy
≤ |x− y|

a2
.

So for any ε > 0, we can take 0 < δ < a2ε. Thus if x, y ∈ [a, 1] with |x− y| < δ, then we have
|f(x)− f(y)| < ε and hence f is uniformly continuous on [a, 1].

Proposition 2.8 If f is continuous on a compact set A, then f is uniformly continuous on
A.
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Proof: Suppose that f is not uniformly continuous on A. Then there is ε > 0 such that for each
n = 1, 2, .., we can find xn and yn in A with |xn−yn| < 1/n but |f(xn)−f(yn)| ≥ ε. Notice that
by the compactness of A, (xn) has a convergent subsequence (xnk

) with a := limk xnk
∈ A.

Now applying sequentially compactness of A for the sequence (ynk
), then (ynk

) contains a
convergent subsequence (ynkj

) such that b := limj ynkj
∈ A. On the other hand, we also have

limj xnkj
= a. Since |xnkj

− ynkj
| < 1/nkj for all j, we see that a = b. This implies that

limj f(xnkj
) = f(a) = f(b) = limj f(ynkj

). This leads to a contradiction since we always have

|f(xnkj
)− f(ynkj

)| ≥ ε > 0 for all j by the choice of xn and yn above. The proof is finished. 2

Proposition 2.9 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F (x) = f(x)
for all x ∈ A.

Proof: The Part (ii)⇒ (i) follows from Theorem 1.8 and Proposition 2.8 at once.
The proof of Part (i)⇒ (ii) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (xn) is a sequence in A and limxn exists, then lim f(xn) exists.
It needs to show that (f(xn)) is a Cauchy sequence. Indeed, let ε > 0. Then by the uniform
continuity of f onA, there is δ > 0 such that |f(x)−f(y)| < ε whenever x, y ∈ A with |x−y| < δ.
Notice that (xn) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that |xm − xn| < δ for all m,n ≥ N . This implies that |f(xm) − f(xn)| < ε for all
m,n ≥ N and hence, Claim 1 follows.
Claim 2. If (xn) and (yn) both are convergent sequences in A and limxn = lim yn, then
lim f(xn) = lim f(yn).
By Claim 1, L := lim f(xn) and L′ = lim f(yn) both exist. For any ε > 0, let δ > 0 be found
as in Claim 1. Since limxn = lim yn, there is N ∈ N such that |xn − yn| < δ for all n ≥ N
and hence, we have |f(xn)− f(yn)| < ε for all n ≥ N . Taking n→∞, we see that |L−L′| ≤ ε
for all ε > 0. So L = L′. Claim 2 follows.
Recall that an element x ∈ A if and only if there is a sequence (xn) in A converging to x.
Now for each x ∈ A, we define

F (x) := lim f(xn)

if (xn) is a sequence in A with limxn = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F (x) = f(x) for all x ∈ A.
So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.
Now suppose that F is not continuous at some point z ∈ A. Then there is ε > 0 such that for
any δ > 0, there is x ∈ A satisfying |x − z| < δ but |F (x) − F (z)| ≥ ε. Notice that for any
δ > 0 and if |x − z| < δ for some x ∈ A, then we can choose a sequence (xi) in A such that
limxi = x. Therefore, we have |xi − z| < δ and |f(xi) − F (z)| ≥ ε/2 for any i large enough.
Hence, for any δ > 0, we can find an element x ∈ A with |x− z| < δ but |f(x)− F (z)| ≥ ε/2.
Now consider δ = 1/n for n = 1, 2.... This yields a sequence (xn) in A which converges to z
but |f(xn)− F (z)| ≥ ε/2 for all n. However, we have lim f(xn) = F (z) by the definition of F
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which leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished. 2

Example 2.10 By using Proposition 2.9, the function f(x) := sin 1
x defined on (0, 1] cannot

be continuously extended to the set [0, 1].

3 Lipschitz functions

Definition 3.1 Let A be a non-empty subset of R. A function f : A→ R is called a Lipschitz
if there is a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.

Proposition 3.2 Every Lipschitz function is uniformly continuous on its domain.

Example 3.3 (i) : The sine function f(x) = sinx is a Lipschitz function on R since we
always have | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

(ii) : Define a function f on [0, 1] by f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
a Lipschitz function. In fact, for any C > 0, if we consider xn = 1

2nπ+(π/2) and yn = 1
2nπ ,

then |f(xn)− f(yn)| > C|xn − yn| if and only if

2

π
·

(2nπ + π
2 )(2nπ)

2nπ + π
2

= 4n > C.

Therefore, for any C > 0, there are x, y ∈ [0, 1] such that |f(x) − f(y)| > C|x − y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 3.4 Let A be a non-empty closed subset of R. If f : A → A is a contraction,
then there is a fixed point of f , that is, there is a point a ∈ A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C < 1 such that |f(x) − f(y)| ≤ C|x − y|
for all x, y ∈ A. Fix x1 ∈ A. Since f(A) ⊆ A, we can inductively define a sequence (xn) in A
by xn+1 = f(xn) for n = 1, 2... Notice that we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|

for all n = 2, 3... This gives
|xn+1 − xn| ≤ Cn−1|x2 − x1|

for n = 2, 3, .... So, for any n, p = 1, 2.., we see that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤ |x2 − x1|
n+p−1∑
i=n

Ci−1.
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Since 0 < C < 1, for any ε > 0, there is N such that
∑n+p−1

i=n Ci−1 < ε for all n ≥ N
and p = 1, 2, ... Therefore, (xn) is a Cauchy sequence and thus the limit a := limn xn exists.
Since A is closed, we have a ∈ A and hence f is continuous at a. On the other hand, since
xn+1 = f(xn). Therefore, we have a = f(a) by taking n→∞. The proof is finished. 2

Remark 3.5 The Proposition 3.4 does not hold if f is not a contraction. For example, if we
consider f(x) = x− 1 for x ∈ R, then it is clear that |f(x)− f(y)| = |x− y| and f has no fixed
point in R.

4 Continuous functions defined on intervals

Recall that a non-empty subset I of R is called an interval if it has one of the following forms.

(i) R.

(ii) (−∞, a] or [a,∞) or (−∞, a) or (a,∞) for some a ∈ R.

(iii) (a, b) or (a, b] or [a, b) or [a, b] for some a, b ∈ R with a < b.

Lemma 4.1 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a, b ∈ I with a < b, we have [a, b] ⊆ I.

Proposition 4.2 (Intermediate Value Theorem): Let I be an interval and let f : I → R
be a continuous function. Suppose that there are a and b in I with f(a) < z < f(b). Then
there is c between a and b such that f(c) = z.

Proof: Notice that if we consider the function x ∈ I 7→ f(x) − z, then we may assume that
z = 0. Also, we may assume that a < b. Put x1 = a and y1 = b. Now if f(a+b2 ) = 0, then the

result is obtained. If f(a+b2 ) > 0, then we set x2 = a and y2 = a+b
2 . Similarly, if f(a+b2 ) < 0,

then we set x2 = a+b
2 and y2 = b. To repeat the same procedure, if there are xN and yN such

that f(xN+yN
2 ) = 0, then the result is shown. Otherwise, we can find a decreasing sequence of

closed and bounded intervals [a, b] = [x1, y1] ⊇ [x2, y2] ⊇ · · · with lim(yn−xn) = 0 and f(xn) <
0 < f(yn) for all n. Then by the Nested Intervals Theorem, we have

⋂
n[xn, yn] = {c} for some

c ∈ [x1, y1] = [a, b] ⊆ I because I is an interval. Moreover, we have limn xn = limn yn = c.
Then by the continuity of f , we see that f(c) = lim f(xn) = lim f(yn). Since f(xn) < 0 < f(yn)
for all n, we have f(c) = 0. The proof is finished. 2

Remark 4.3 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0, 1) ∪ (2, 3] and define f : I → R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ (2, 3].

Then f(0) < 1 < f(3) but 1 /∈ f(I).

Corollary 4.4 Let f ; [a, b]→ R. Suppose that M := sup{f(x) : x ∈ [a, b]} and m = inf{f(x) :
x ∈ [a, b]}. Then f([a, b]) = [m,M ].
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Proof: Notice that if m = M , then f is a constant function and hence, the result is clearly
true.
Now suppose that m < M . It is clear that f([a, b]) ⊆ [m,M ] because m ≤ f(x) ≤ M for all
x ∈ [a, b]. For the converse inclusion, notice that since [a, b] is compact, there are x1 and x2
in [a, b] such that f(x1) = m and f(x2) = M . We may assume that x1 < x2. To apply the
Intermediate Value Theorem for the restriction of f on [x1, x2], we have [m,M ] ⊆ f([x1, x2]) ⊆
f([a, b]). The proof is finished. 2

Corollary 4.5 Let I be an interval and let f : I → R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 4.1, it needs to show that for any c, d ∈ f(I) with c < d implies
that [c, d] ⊆ f(I). Suppose that a, b ∈ I with a < b satisfy f(a) = c and f(b) = d. Notice that
[a, b] ⊆ I because I is an interval. If we put M = supx∈[a,b] f(x) and m = infx∈[a,b] f(x), then
by Corollary 4.4, we have

[c, d] ⊆ [m,M ] = f([a, b]) ⊆ f(I).

The proof is finished. 2

Example 4.6 It is impossible to find a continuous surjection from (a, b) onto (c, d) ∪ (e, f)
where d ≤ e.
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