Note on MATH 2050A: 2019

Chi-Wai Leung

1 29 Oct 2019: Continuous functions on a compact set

Recall that a subset A of \mathbb{R} is said to be *compact* if for any sequence (x_n) in A must have a convergent subsequence $(x_{n(k)})$ of (x_n) such that $\lim_{k \to \infty} x_{n(k)} \in A$.

Proposition 1.1 Let $f : A \to \mathbb{R}$ is a continuous function defined on a compact subset A of \mathbb{R} , then the image f(A) is compact.

Proof: Let (y_n) be a sequence in f(A). Let (x_n) be a sequence in A such that $f(x_n) = y_n$ for all n = 1, 2, ... Since A is compact, there is a convergent subsequence $x_{n(k)}$ of (x_n) such that $c := \lim_{k \to \infty} x_{n(k)} \in A$. Then by the continuity of f at c, we see that

$$\lim_{k \to \infty} y_{n(k)} = \lim_{k \to \infty} f(x_{n(k)}) = f(c) \in f(A)$$

as desired. The proof is finished.

Definition 1.2 Let A and B be the subsets of \mathbb{R} . A bijection $f : A \to B$ is called a *homeomorphism* if f and its inverse f^{-1} both are continuous.

In this case, we say that the sets A and B are *homeomorphic*.

Proposition 1.3 Let A and B be subsets of \mathbb{R} and let $f : A \to B$ be a continuous bijection. If A is compact, then the inverse $f^{-1} : B \to A$ is continuous. Hence, the function f is a homeomorphism automatically in this case.

Proof: Fix an element $b \in B$. It needs to show that if a sequence (y_n) in B converges to b, then the sequence $\lim_{x \to a} f^{-1}(y_n) = f^{-1}(b)$. Put $x_n := f^{-1}(y_n)$ and $a := f^{-1}(b)$.

The result will be shown by the contradiction. Suppose that $x_n \nleftrightarrow a$. Then there is $\varepsilon > 0$ and a subsequence $(x_{n(k)})$ of (x_n) such that

$$|x_{n(k)} - a| \ge \varepsilon \quad \text{for all } k = 1, 2.... \tag{1.1}$$

By the compactness of A, there is a convergent subsequence $(x_{k(i)})$ of $(x_{n(k)})$ such that $c := \lim_{i \to \infty} x_{k(i)} \in A$. Then the Eq 1.1 gives us that $|c - a| \ge \varepsilon$ and hence, $c \ne a$. From this, we have $f(c) \ne f(a) = b$ because f is bijective.

On the other hand, since f is continuous at c, we have $\lim_{i \to \infty} y_{k(i)} = \lim_{i \to \infty} f(x_{k(i)}) = f(c)$. This implies that b = f(c) which leads to a contradiction. The proof is finished.

Remark 1.4 The following example shows that the assumption of compactness in Proposition 1.3 is essential.

Example 1.5 Let $A = [0,1) \cup [2,3]$ and B = [0,2]. Define f(x) = x as $x \in [0,1)$ and f(x) = x-1 as $x \in [2,3]$. Then the function f is a continuous bijection from A onto B but the inverse function f^{-1} is not continuous at y = 1. So, the function is as required.