
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MMAT5220 Complex Analysis and Its Applications 2019-20
Week 9 Examples

1. Find the poles and residues of the following functions:

(a)
1

sin z
(b) cot z (c)

1

sin2 z

Solution. Notice that cot z = cos z
sin z

. For all functions above, the singular points are the
zero set of sin z, which is πZ.

Moreover, by proposition in Week 9 lecture,

Res
z=πn

1

sin z
=

1

cos πn
= (−1)n,

Res
z=πn

cot z = Res
z=πn

cos z

sin z
=

cos(πn)

cos(πn)
= 1.

Every zeros of the function sin2 z has order 2. In general, if f(z) has a zero of order 2,

then we may compute Res
z=z0

1

f(z)
in the following way.

f(z) =
f (2)(z0)

2!
(z − z0)2 +

f (3)(z0)

3!
(z − z0)3 + · · ·

=
f (2)(z0)

2
(z − z0)2(1− h(z)),

where

h(z) = −
∞∑
k=1

2

f (2)(z0)

f (k+2)(z0)

(k + 2)!
(z − z0)k

has a zero of order m ≥ 1 at z = z0. Therefore,
1

f(z)
=

2

f (2)(z0)

1

(z − z0)2

(
1 + h(z) + h(z)2 + · · ·

)
The term 1

z−z0 appears only when h(z) is multiplied by 1
(z−z0)2

, hence the residue is com-
puted to be

Res
z=z0

1

f(z)
=

2

f (2)(z0)

(
− 2

f (2)(z0)

f (3)(z0)

3!

)
=
−2f (3)(z0)

3f (2)(z0)2

In our case, f(z) = sin2 z, f ′(z) = sin 2z, f ′′(z) = 2 cos 2z, f (3)(z) = −4 sin 2z, hence

by the formula above Res
z=πn

1

sin2 z
= 0. J

2. Using the residue at infinity to evaluate the integral of f(z) around the positively oriented
circle |z| = 3 when f(z) equals

(a)
(3z + 2)2

z(z − 1)(2z + 5)
(b)

z3(1− 3z)

(1 + z)(1 + 2z4)
(c)

z3e
1
z

1 + z3



2

Solution. For each of them, we put g(z) = 1
z2
f(1

z
).

(a) Notice that all poles z = 0, 1,−5/2 of f(z) lie inside the contour |z| = 3. By
Cauchy’s residue theorem ∫

|z|=3

f(z) dz = 2πiRes
z=0

g(z)

Note that

g(z) =
1

z2

z(3 + 2z)2

(1− z)(2 + 5z)
=

(3 + 2z)2

z(1− z)(2 + 5z)

and Res
z=0

g(z) = 9/2. Hence
∫
|z|=3

f(z) dz = 9πi.

(b) Note that all poles of the function lie inside the contour |z| = 3, and

g(z) =
1

z2
f(

1

z
) =

z − 3

z(z + 1)(z4 + 2)

Hence, ∫
|z|=3

f(z) dz = 2πiRes
z=0

g(z) = 2πi

(
−3

2

)
= −3πi

(c) Note that the singular points of the function f(z) are z = 0 (essential singular-
ity), and e

πi
3 , e

2πi
3 , 1 (simple poles), and all of them lie inside the contour |z| = 3.

Moreover,

g(z) =
ez

z2(z3 + 1)

To compute Res
z=0

g(z), note that around z = 0, we have

ez

z2(z3 + 1)
= (

1

z2
+

1

z
+

1

2
+

1

3
z + . . . )(1− z3 + z6 + · · · )

Therefore, we have ∫
|z|=3

f(z) dz = 2πiRes
z=0

g(z) = 2πi.

J

3. Evaluate the following integrals by the method of residues:

(a)
∫∞
−∞

x2−x+2
x4+10x2+9

dx

(b)
∫∞

0
cosx
x2+a2

dx, a real,

(c)
∫∞

0
x sinx
x2+a2

dx, a real.

Solution.
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(a) Consider the positively oriented contour ΓR composed of the upper semicircle C+
R

centered at 0 with radius R, and the diameter lR.
Consider f(z) = z2−z+2

z4+10z2+9
. By solving z4 + 10z2 + 9 = 0, the only singular points

of f(z) are z = ±i,±3i. For R > 3, the only poles lying inside the contour ΓR are
i and 3i. Using Cauchy’s residue theorem, we have∫

ΓR

f(z) dz = 2πi(Res
z=i

f(z) + Res
z=3i

f(z))

= 2πi

(
1− i

2i(4i)(−2i)
+
−3i− 7

4i(2i)(6i)

)
=

5π

12

Now, ∣∣∣∣∣
∫
C+
R

z2 − z + 2

z4 + 10z2 + 9
dz

∣∣∣∣∣ ≤
∫
C+
R

|z|2 + |z|+ 2

|z|4 − 10|z|2 − 9
dz

=
R2 +R + 2

R4 − 10R2 − 9
πR

→ 0 as R→∞

Hence, ∫ R

−R

x2 − x+ 2

x4 + 10x2 + 9
dx+

∫
C+
R

z2 − z + 2

z4 + 10z2 + 9
dz =

5π

12

implies that

lim
R→∞

∫ R

−R

x2 − x+ 2

x4 + 10x2 + 9
dx =

5π

12
.

Indeed, both the improper integrals
∫∞

0
x2−x+2

x4+10x2+9
dx and

∫ 0

−∞
x2−x+2

x4+10x2+9
dx exist,

because ∣∣∣∣ x2 − x+ 2

x4 + 10x2 + 9

∣∣∣∣ ≤ 3x2

x4
=

3

x2
when |x| is large enough.

Therefore, the improper integral
∫∞
−∞

x2−x+2
x4+10x2+9

dx exists and equals 5π
12

.

(b) If a = 0, then the integral does not exist, because for 0 < x < π
3
, cosx > 1

2
, and

hence ∫ π
3

0

cosx

x2
≥ 1

2

∫ π
3

0

1

x2
= lim

x→0+

1

2

(
1

x
− 3

π

)
=∞.

For a 6= 0, consider the same contours in part (a) and the function f(z) = eiz

z2+a2
.

Cauchy’s residues theorem tells us that for R > |a|,∫ R

−R

eix

x2 + a2
+

∫
C+
R

eiz

z2 + a2
= 2πi Res

z=|a|i

eiz

z2 + a2
=
πe−|a|

|a|

Taking the real part of both sides,∫ R

−R

cosx

x2 + a2
+ Re

∫
C+
R

eiz

z2 + a2
=
πe−|a|

|a|
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Now, in the upper half plane, we have y ≥ 0 and hence |eiz| = e−y ≤ 1. Moreover,∣∣∣∣∣Re

∫
C+
R

eiz

z2 + a2

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
C+
R

eiz

z2 + a2

∣∣∣∣∣ ≤ πR

R2 − a2
→ 0 as R→∞.

Since cosx
x2+a2

is even, we have ∫ ∞
0

cosx

x2 + a2
=
πe−|a|

2|a|

(c) For a 6= 0, consider the integral of f(z)eiz = zeiz

z2+a2
on ΓR as in part (a). |a|i is

the only singular point inside ΓR and Res
z=|a|i

f(z)eiz =
e−|a|

2
. So Cauchy’s residue

theorem implies that∫ R

−R

xeix

x2 + a2
dx+

∫
C+
R

zeiz

z2 + a2
dz = πie−|a|

On C+
R , we have ∣∣∣∣ z

z2 + a2

∣∣∣∣ ≤ R

R2 − a2
→ 0 as R→∞

By Jordan’s Lemma, we have∫
C+
R

zeiz

z2 + a2
dz → 0 as R→∞

Taking the imaginary parts, we have∫ ∞
0

x sinx

x2 + a2
dx =

πe−|a|

2
.

For a = 0, we may compare sinx
x

with x sinx
x2+a2

for small a. Let ε > 0. It is easy to see
that for some δ > 0, we have∣∣∣∣∫ δ

0

x sinx

x2 + a2
dx

∣∣∣∣ < ε and
∣∣∣∣∫ δ

0

sinx

x

∣∣∣∣ < ε,

because lim
x→0

sinx

x
= 1. For this fixed δ, since 1

x2
− 1

x2+a2
= a2

x2(x2+a2)
≤ a2

x4
, we have∣∣∣∣∫ ∞

δ

sinx

x
− x sinx

x2 + a2
dx

∣∣∣∣ ≤ ∫ ∞
δ

a2

x3
dx =

a2

2δ2
→ 0 as a→ 0

This shows that∣∣∣∣∫ ∞
0

sinx

x
dx−

∫ ∞
0

x sinx

x2 + a2
dx

∣∣∣∣ < 2ε for any small a.

Hence, ∫ ∞
0

sinx

x
dx = lim

a→0+

∫ ∞
0

x sinx

x2 + a2
dx = lim

a→0

πe−|a|

2
=
π

2
.
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J

4. Let ξ ∈ R. Show that ∫ ∞
−∞

e−πx
2

e−2πixξ dx = e−πξ
2

Solution. For the case ξ = 0, recall that
∫∞
−∞ e

−x2 dx =
√
π and hence∫ ∞

−∞
e−πx

2

dx =

∫ ∞
−∞

e−x
2 dx√

π
= 1.

For ξ < 0, consider the function f(z) = e−πz
2
e−2πizξ. Note that for fixed y,

|e−π(x+iy)2| = |e−π(x2−y2)−2πixy| = e−π(x2−y2) → 0 as x→∞

On the other hand, we have |e−2πizξ| = e2πyξ.

Let ΓR be the positively oriented boundary of the rectangle bounded by the lines y =
0,−ξ and x = ±R.

Let
l1 be the line segment from −R to R
l2 be the line segment from R to R− ξi
l3 be the line segment from R− ξi to −R− ξi
l4 be the line segment from −R− ξi to −R

Now on the line segment l3, we have

f(x− ξi) = e−π(x−ξi)2e−2πi(x−ξi)ξ = e−πx
2

e−πξ
2

for −R ≤ x ≤ R.

Hence, ∫
l3

f(z) dx =

∫ −R
R

e−πx
2

e−πξ
2

dx = −e−πξ2
∫ R

−R
e−πx

2

dx

Moreover,∣∣∣∣∫
l2

f(z) dz

∣∣∣∣ ≤ ∫ −ξ
0

∣∣∣e−π(R+iy)2e−2πi(R+iy)ξ
∣∣∣ dy =

∫ −ξ
0

e−π(R2−y2)e2πyξ dx

≤ −ξe−π(R2−ξ2) → 0 as R→∞

Similarly,
∫
l4
f(z) dz → 0 as R → ∞. By Cauchy’s integral formula, for the entire

function f(z), we have
∫

ΓR
f(z) dz = 0 and as R→∞, we obtain∫ ∞
−∞

e−πx
2

e−2πixξ dx = e−πξ
2

For ξ > 0, since −ξ < 0, we have∫ ∞
−∞

e−πx
2

e−2πixξ dx =

∫ −∞
∞

e−π(−x)2e−2πi(−x)ξ d(−x) =

∫ ∞
−∞

e−πx
2

e−2πix(−ξ) dx = e−πξ
2

.

J


