THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5220 Complex Analysis and Its Applications 2019-20 Week 8 Examples

1. Let $f(z) = e^z - 1$ be an entire function. Then, the zero set of f is $\{\pm 2\pi ni : n \in \mathbb{N} \cup \{0\}\}$. The function

$$T(z) = -i\frac{z-1}{z+1}$$

maps the unit circle and its interior onto $\{y = 0\} \cup \{\infty\}$ and the upper half plane $\{y > 0\}$. Hence, $f \circ T(z) = e^{-i\frac{z-1}{z+1}} - 1$ is an analytic function on the open unit disk $\{|z| < 1\}$ and it has infinitely many zeros there. Notice that the zero set of the function $f \circ T$ does not contain a limit point in the open unit disk $\{|z| < 1\}$.

2. Suppose f(z) is analytic in a punctured disc $\{0 < |z - z_0| < r\}$. Suppose also that

$$|f(z)| \le A|z - z_0|^{-1+\epsilon}$$

for some $\epsilon > 0$, and all z near z_0 . Show that the singularity of f at z_0 is removable.

Solution. You may write

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

as a Laurant series expansion on $\{0 < |z - z_0| < r\}$, and then argue that $b_n = 0$ for all $n \ge 1$ as in Week 8 Lecture notes, together with the given inequality.

Another way is to apply the theorem. Note the function $f(z)(z - z_0)$ is an analytic function on $\{0 < |z - z_0| < r\}$ and $f(z)(z - z_0)$ is bounded for z near z_0 . Indeed,

$$|f(z)(z-z_0)| \le A|z-z_0|^{\epsilon} \le A$$

for all z near z_0 . By the theorem, there is some analytic function g on $\{|z - z_0| < r\}$ such that $f(z)(z - z_0) = g(z)$ in the disc punctured at z_0 . Using the inequality again, we see that g(0) = 0 and hence $g(z) = (z - z_0)^m g_1(z)$, where g_1 is analytic on $\{|z - z_0| < r\}$ and $m \in \mathbb{N}$.

In conclusion, $f(z) = (z - z_0)^{m-1}g_1(z)$ on the punctured disc. Note that $(z - z_0)^{m-1}g_1(z)$ is analytic at z_0 . It shows that the singularity of f at z_0 is removable.

3. Let f be a non-constant entire function, i.e. a function analytic on \mathbb{C} . Show that the image of f is dense in \mathbb{C} .

Solution. Suppose not, there is some $w_0 \in \mathbb{C}$ and $\epsilon_0 > 0$ such that $|f(z) - w_0| \ge \epsilon_0$ for all $z \in \mathbb{C}$. Hence, $1/(f(z) - w_0)$ is an entire function bounded by $1/\epsilon_0$. By Liouville's theorem, $1/(f(z) - w_0)$ is a constant function. This contradicts to the assumption that f is a non-constant function. Therefore, the image of f is dense in \mathbb{C} .

4. Find the residues of the following functions at 1.

(a)
$$1/(z^2-1)(z+2)$$
; (b) $(z^3-1)(z+2)/(z^4-1)^2$

Solution.

(a) Notice that

$$\frac{1}{(z^2-1)(z+2)} = \frac{1}{(z-1)} \cdot \frac{1}{(z+1)(z+2)} = \frac{\phi(z)}{z-1}.$$

The function $\phi(z) = \frac{1}{(z+1)(z+2)}$ is analytic at z = 1, and hence

$$\phi(z) = \sum_{n=0}^{\infty} \frac{\phi^{(n)}(1)}{n!} (z-1)^n$$
 for all z near 1

Since

$$\frac{1}{(z^2-1)(z+2)} = \frac{\phi^{(0)}(1)}{0!} \frac{1}{z-1} + \sum_{n=0}^{\infty} \frac{\phi^{(n+1)}(1)}{(n+1)!} (z-1)^n,$$

the residue of the given function at 1 is $\phi(1) = 1/6$.

(b) Simplifying the quotient, we have

$$f(z) = \frac{(z^2 + z + 1)(z + 2)}{(z - 1)(z^3 + z^2 + z + 1)^2}.$$

Note that z = 1 is a simple pole of f. The residue of f at 1 is

$$\lim_{z \to 1} f(z)(z-1) = \frac{(1^2+1+1)(1+2)}{(1^3+1^2+1+1)^2} = \frac{9}{16}.$$

5. Find the value of the integral

$$\int_C \frac{dz}{z^3(z+4)}$$

taken counterclockwise around the circle (a) |z| = 2; (b) |z + 2| = 3.

Solution. Notice that the given function f has a pole of order 3 at z = 0, and a simple pole at z = -4. To calculate $\underset{z=0}{\text{Res}} f(z)$, we note that

$$\frac{1}{z+4} = \frac{1}{4}(1 - \frac{z}{4} + \frac{z^2}{16} - \frac{z^3}{64} + \cdots).$$

Hence, $\underset{z=0}{\text{Res}} f(z) = 1/64$. On the other hand, $\underset{z=-4}{\text{Res}} f(z) = 1/(-4)^3 = -1/64$.

- (a) For the contour |z| = 2, its interior contains the pole z = 0 only. By Cauchy's residue theorem, the integral equals $2\pi i \operatorname{Res}_{z=0} f(z) = \pi i/32$.
- (b) For the contour |z + 2| = 3, its interior contains the pole z = 0 and z = -4. By Cauchy's residue theorem, the integral equals $2\pi i(\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=-4} f(z)) = 0$.