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1. Evaluate the following integrals by the method of residues:

(a)
∫ π

2

0

dx

a+ sin2 x
, a ∈ R, |a| > 1, (b)

∫ 2π

0

cos2 3θ

5− 4 cos 2θ
dθ.

(c)
∫ ∞

0

log x

1 + x2
dx (d)

∫ ∞
0

log(1 + x2)
dx

x1+α
, 0 < α < 2.

You may try integration by parts for (d).

Solution. (a) Using the double angle formula, we have∫ π
2

0

dx

a+ sin2 x
=

∫ π
2

0

dx

a+ 1
2
(1− cos 2x)

=

∫ π

0

dθ

2a+ (1− cos θ)
(θ = 2x)

=
1

2

∫ π

−π

dθ

2a+ (1− cos θ)
(even function)

Let z = eiθ and consider the positively oriented contour {|z| = 1}, we see that∫ π

−π

dθ

2a+ (1− cos θ)
=

∫
|z|=1

1

2a+ (1− z+z−1

2
)

dz

iz

=

∫
|z|=1

2

(4a+ 2)z − z2 − 1

dz

i

= 2i

∫
|z|=1

dz

z2 − (4a+ 2)z + 1

The polynomial z2 − (4a+ 2)z + 1 has two real roots

α = 2a+ 1 + 2
√
a2 + a, β = 2a+ 1− 2

√
a2 + a

Note that α is outside the unit circle if a > 1, while β is outside if a < −1. Also,
the integral

∫ π
2

0
dx

a+sin2 x
is nonzero in any cases. This implies that the other roots will

lie inside the circle |z| = 1. Using the residue, we have∫ π
2

0

dx

a+ sin2 x
=

{
2πi(2i)
2(β−α)

if a > 1,
2πi(2i)
2(α−β)

if a < −1.

=
a

|a|
π

2
√
a2 + a
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(b) Let z = eiθ and consider the positively oriented contour {|z| = 1}, then

cos 3θ =
1

2

(
z3 +

1

z3

)
, cos 2θ =

1

2

(
z2 +

1

z2

)
.

That is, ∫ 2π

0

cos2 3θ

5− 4 cos 2θ
dθ =

∫
|z|=1

(z3 + z−3)2

4(5− 2(z2 + z−2))

dz

iz

=

∫
|z|=1

(z6 + 1)2

4z5(5z2 − 2(z4 + 1))

dz

i

=
i

4

∫
|z|=1

(z6 + 1)2

z5(2z4 − 5z2 + 2)
dz

The polynomial 2z4 − 5z2 + 2 can be factorized as

(2z2 − 1)(z2 − 2) = 2(z − 1/
√

2)(z + 1/
√

2)(z −
√

2)(z +
√

2)

So, if we put f(z) = (z6+1)2

z5(2z4−5z2+2)
, then all the singular points of f(z) inside the

unit circle are z = 0,−1/
√

2, 1/
√

2. We would apply Cauchy’s residue theorem to
compute the integral

∫
|z|=1

f(z) dz. Note that

Res
z=−1√

2

f(z) =
(−
√

2)5((−1√
2
)6 + 1)2

2(−2√
2
)(−1√

2
−
√

2)(−1√
2

+
√

2)
= −27

16
.

Similarly, one also has Res
z=1/

√
2
f(z) = −27/16.

For Res
z=0

f(z), we observe that

f(z) =
z7 + 2z

2z4 − 5z2 + 2
+

1

z5(2z4 − 5z2 + 2)
= h(z) +

1

2z5

(
1

1− (5
2
z2 − z4)

)
,

where h(z) is analytic at 0. Therefore, the Laurent series of f(z) around z = 0 is

f(z) =
1

2z5

(
1 +

5

2
z2 − z4 + (

5

2
z2 − z4)2 + · · ·

)
+ · · ·

=
1

2z5
(1 +

5

2
z2 − z4 +

25

4
z4 + · · · ) + · · · (up to z−1)

Hence, we have Res
z=0

f(z) =
21

8
.

By residue theorem,∫
|z|=1

f(z) dz = 2πi(−27

16
− 27

16
+

21

8
) = −3

2
πi

and
∫ 2π

0
cos2 3θ

5−4 cos 2θ
dθ = 3π/8.
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(c) Consider an indented contour Γε,R composed of two upper semicircles and two line
segments, one line segment from −R to −ε, and the other from ε to R. The two
semicircles are centered at 0 with radii ε and R respectively. We assume that R is
large and ε is small. Also, we consider the function

f(z) =
log z

1 + z2
with chosen branch −π

2
< θ ≤ 3π

2
.

The function f(z) is analytic on and inside Γε,R except at the point z = i. By
Cauchy’s residue theorem,∫

Γε,R

f(z) dz = 2πiRes
z=i

f(z) = 2πi(
1

2i
log i) =

iπ2

2
.

On the other hand,∫
Γε,R

f(z) dz =

∫ −ε
−R

f(z) dz +

∫
−C+

ε

f(z) dz +

∫ R

ε

f(z) dz +

∫
C+
R

f(z) dz,

where C+
ε , C

+
R are upper semicircles of radii ε and R oriented in counterclockwise

direction. Now, note that∫ −ε
−R

f(z) dz +

∫ R

ε

f(z) dz =

∫ R

ε

log(−z)

1 + z2
dz +

∫ R

ε

log z

1 + z2
dz

= 2

∫ R

ε

log z

1 + z2
dz +

∫ R

ε

πi

1 + z2
dz

Applying residue theorem to the function 1/(1 + z2) on a contour composed of an
upper semicircle and the diameter with large radius, we can conclude that∫ ∞

0

1

1 + z2
dz =

1

2

∫ ∞
−∞

1

1 + z2
dz =

1

2
(2πi)(

1

2i
) =

π

2
.

Hence,

lim
ε→0
R→∞

(∫ −ε
−R

f(z) dz +

∫ R

ε

f(z) dz

)
= 2

∫ ∞
0

log z

1 + z2
dz +

iπ2

2
.

Also, using L’Hôpital’s rule, we have∣∣∣∣∫
−C+

ε

f(z) dz

∣∣∣∣ ≤ πε
| log ε|+ 3π

2

1− ε2
→ 0 as ε→ 0∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
logR + 3π

2

R2 − 1
→ 0 as R→∞

In conclusion, we have
∫∞

0
log x
1+x2

dx = 0. Rather than using residues, one may
substitute y = 1/x to obtain∫ ∞

1

log x

1 + x2
dx =

∫ 1

0

− log y

1 + 1
y2

dy

y2
= −

∫ 1

0

log y

1 + y2
dy,

and draw the same conclusion.
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(d) Doing integration by parts, we have∫ ∞
0

log(1 + x2)
dx

x1+α
=

∫ ∞
0

1

−α
log(1 + x2) dx−α

=
−x−α

α
log(1 + x2)|∞x=0 +

1

α

∫ ∞
0

x−α
2x dx

1 + x2

=
2

α

∫ ∞
0

x1−α

1 + x2
dx

It can be checked that we have lim
x→0

log(1 + x2)

xα
= 0 and lim

x→∞

log(1 + x2)

xα
= 0 by

L’Hôptial’s rule. Now, we apply the contour described in part (c), and let

f(z) =
z1−α

1 + z2
=
e(1−α) log z

1 + z2
,

where the branch of the log function is chosen to be −π
2
< arg z ≤ 3π

2
. Therefore,

the function f(z) is analytic on and inside the contour Γε,R except at the point z = i.
By residue theorem, we see that∫

Γε,R

f(z) dz = 2πiRes
z=i

f(z) = 2πi(
e(1−α) log i

2i
) = πe

π
2
i−πα

2
i = πie

−iπα
2

On the other hand,∫
Γε,R

f(z) dz =

∫ −ε
−R

f(z) dz +

∫
−C+

ε

f(z) dz +

∫ R

ε

f(z) dz +

∫
C+
R

f(z) dz,

where C+
ε , C

+
R are upper semicircles of radii ε and R oriented in counterclockwise

direction. We will calculate the integrals over the line segments (−R,−ε) and (ε, R)
respectively, and then claim that the integrals over the semicircles will tend to 0 as
ε→ 0 and R→∞. ∫ R

ε

f(z) dz =

∫ R

ε

x1−α

1 + x2
dx∫ −ε

−R
f(z) dz =

∫ −ε
−R

e(1−α) log z

1 + z2
dz

=

∫ R

ε

e(1−α) log(−x)

1 + x2
dx

=

∫ R

ε

e(1−α)(log x+iπ)

1 + x2
dx

= −e−iπα
∫ R

ε

x1−α

1 + x2
dx

Moreover, ∣∣∣∣∫
−C+

ε

f(z) dz

∣∣∣∣ ≤ πε
ε1−α

1− ε2
→ 0 as ε→ 0∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
R1−α

R2 − 1
→ 0 as R→∞



5

The convergence is due to the observation 0 < 2− α < 2. In conclusion, as ε → 0
and R→∞, we obtain

πie
−iπα

2 = (1− e−iπα)

∫ ∞
0

x1−α

1 + x2
dx∫ ∞

0

x1−α

1 + x2
dx =

πi

e
iπα
2 − e−iπα2

=
π

2 sin πα
2

Therefore, ∫ ∞
0

log(1 + x2)
dx

x1+α
=

π

α sin πα
2

J

2. Prove that ∫ ∞
0

sin(x2) dx =

∫ ∞
0

cos(x2) dx =

√
2π

4
.

These are the Fresnel integrals. [Hint: Integrate the function eiz2 over the path: from
0 to R, and then from R to Rei

π
4 along the minor arc of circle |z| = R, and back to 0

through the straight line. Recall that
∫∞
∞ e−x

2
dx =

√
π.]

Solution. Let l1 be the line segment from 0 to R, CR be the minor arc described in the
hint, and l2 be the line segment from Rei

π
4 to 0. Let ΓR be the positively oriented contour

composed of l1, l2 and CR. Note that the function f(z) = eiz
2 is entire. In particular, by

Cauchy-Goursat theorem, we have ∫
ΓR

f(z) dz = 0.

On the other hand, on the line segment l1, we have∫
l1

f(z) dz =

∫ R

0

eix
2

dx =

∫ R

0

cos(x2) dx+ i

∫ R

0

sin(x2) dx.

and on l2, we have ∫
l2

f(z) dz =

∫ 0

R

ei(re
iπ
4 )2e

iπ
4 dr

= −e
iπ
4

∫ R

0

ei(re
iπ
4 )2 dr

= −e
iπ
4

∫ R

0

eir
2e
iπ
2 dr

= −e
iπ
4

∫ R

0

e−r
2

dr
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Moreover, on the arc CR, we claim that the integral goes to 0 as R → ∞. Recall that
sinx ≥ 2x

π
on [0, π

2
]. (see Week 9 Lecture) Now,∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

4

0

ei(Re
iθ)2Reiθ idθ

∣∣∣∣∣
≤
∫ π

4

0

∣∣∣eiR2(cos 2θ+i sin 2θ)
∣∣∣R dθ

= R

∫ π
4

0

e−R
2 sin 2θ dθ

≤ R

∫ π
4

0

e−
4R2

π
θ dθ

=
π

4R

(
1− e−R2

)
→ 0 as R→∞.

To conclude, as R→∞, we obtain∫ ∞
0

cos(x2) dx =

∫ ∞
0

sin(x2) dx =
1√
2

√
π

2
=

√
2π

4
.

J

3. Let U be a simply connected domain and z0 ∈ U . Suppose h is an analytic function on U
and h(z) 6= 0 for all z ∈ U . Put f(z) = (z − z0)mh(z) for some m ∈ Z. If γ is a closed
contour such that z0 /∈ γ, prove that

1

2πi

∫
γ

f ′(z)

f(z)
dz = n(γ, z0)m.

where n(γ, z0) is the winding number of γ around z0.

Solution. Notice that

f ′(z) = m(z − z0)m−1h(z) + (z − z0)mh′(z)

f ′(z)

f(z)
=

m

z − z0

+
h′(z)

h(z)

By Extended Cauchy-Goursat theorem (Week 4 Lecture) and the definition of winding
number, we have

1

2πi

∫
γ

f ′(z)

f(z)
dz = n(γ, z0)m+ 0 = n(γ, z0)m.

J

4. Determine the number of zeros of the polynomial

z87 + 36z57 + 71z4 + z3 − z + 1

inside the circle



7

(a) of radius 1,

(b) of radius 2, centered at the origin.

(c) Determine the number of zeros of the polynomial

2z5 − 6z2 + z + 1 = 0

in the annulus 1 ≤ |z| ≤ 2.

Solution. (a) Let f(z) = 71z4 and g(z) = z87 + 36z57 + z3 − z + 1. Then, both f and
g are entire functions. Also,

|g(z)| ≤ |z|87 + 36|z|57 + |z|3 + |z|+ 1 = 40 < 71 = |f(z)| on |z| = 1.

By Rouché’s theorem, the polynomial f + g and f have the same number of zeros
inside |z| = 1, which is equal to 4.

(b) Let f(z) = z87 and g(z) = 36z57 + 71z4 + z3− z+ 1. Then, both f and g are entire
functions. Also, on the circle |z| = 2, we have

|g(z)| ≤ 36|z|57 + 71|z|4 + |z|3 + |z|+ 1

≤ 26 · 257 + 27 · 24 + 23 + 2 + 2

≤ 26 · 257 · 5
≤ 266 < 287 = |f(z)|

By Rouché’s theorem, the polynomial f + g and f have the same number of zeros
inside |z| = 2, which is equal to 87.

(c) Let f1(z) = 2z5 and g1(z) = −6z2 + z+ 1. Then, both f and g are entire functions.
Also, on the circle |z| = 2, we have

|g1(z)| ≤ 6|z|2 + |z|+ 1 = 27 < 64 = |f1(z)|

By Rouché’s theorem, the polynomial f1 +g1 and f1 have the same number of zeros
inside |z| = 2, which is equal to 5. Recall that the inequality |f1(z) + g1(z)| ≥
|f1(z)| − |g1(z)| > 0 automatically tells us that both f1 + g1 and f1 have no zero on
the circle {|z| = 2}.
On the other hand, we put f2(z) = −6z2 and g2(z) = 2z5 + z + 1. Using Rouché’s
theorem again, we can show that the number of zeros of f2 + g2 inside the circle
|z| = 1 is 2. Therefore, the number of zeros of the polynomial in the annulus
{1 ≤ |z| ≤ 2} is 5− 2 = 3.

J

5. Let f be analytic on the closed unit disc D.

(a) Assume that |f(z)| = 1 if |z| = 1, and f is not constant. Prove that the image of f
contains the closed unit disc.

(b) Assume that there exists some point z0 ∈ D such that |f(z0)| < 1, and that |f(z)| ≥
1 if |z| = 1. Prove that f(D) contains the open unit disc
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Solution. (a) Recall that by Maximum Modulus Principle, we can deduce that f must
attain 0 inside the circle {|z| = 1}. (see Week 5 Examples) Now, let |w0| < 1,
notice that

| − w0| < 1 = |f(z)| for |z| = 1.

By Rouché’s theorem, f(z) and f(z) − w0 have the same number of zeros inside
the unit circle. This shows that f(z0) = w0 for some |z0| < 1. Since w0 is arbitrary,
D ⊆ f(D). The continuity of f further tells us that D ⊆ f(D).

(b) Naively, if we put γ = {|z| = 1}, then the assumption tells us that f(z) − f(z0)
attains zeros inside the unit circle. Since the function f(z) is analytic, it has no poles
inside the contour γ. By argument principle, the contour f(γ)− f(z0) circulate the
point z = 0 at least once and hence, f(γ) would enclose the point f(z0). However,
|f(γ)| ≥ 1. A picture will show that every point inside the unit circle is enclosed by
f(γ). Using the argument principle again, we see that f(D) contains the unit disc.
To argue this formally, note

|f(z)| ≥ 1 > | − f(z0)| for |z| = 1.

Rouché’s theorem implies that f(z) and f(z)−f(z0) have the same number of zeros
inside the unit circle. In particular, f(z) = 0 for some |z| < 1. Now let any |w0| < 1
and notice that

|f(z)| ≥ 1 > | − w0| for |z| = 1.

By Rouché’s theorem again, we can conclude that f(z) = w0 for some |z| < 1. This
shows that f(D) contains the open unit disc.

J


