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Compulsory Part

1. Find the residue at z = 0 of the following functions:

(a)
1

z + z2
;

(b) z cos
(
1

z

)
.

Solution.

(a) Let f(z) = 1/(z + z2) and h(z) = 1/(1 + z). Notice that h(z) is analytic at z = 0
and

f(z) =
1

z
h(z)

Therefore, we have Res
z=0

f(z) = h(0) = 1.

(b) Let f(z) = z cos(1/z). To find the residue of f at z = 0, we may consider the
Laurent series of cos(1/z) around z = 0. The coefficient of the term 1/z2 in the
series expansion will be the required residue. Note that

cos

(
1

z

)
= 1− 1

2!

(
1

z2

)
+

1

4!

(
1

z4

)
+ · · ·

Hence, Res
z=0

f(z) = −1/2.

J

2. For each of the following functions, find all its isolated singular points, write down their
principal parts, classify their types, and compute the residues:

(a)
z − 1

z2 − 5z + 4
;

(b) sin

(
2

z

)
;

(c)
z + 1

cos z
.

Solution. (a) Notice that z2− 5z+4 = (z− 4)(z− 1) and hence {1, 4} are all isolated
singular points of the given function. Moreover,

z − 1

z2 − 5z + 4
=

1

z − 4
for z 6= 1 or 4

So, z = 1 is a removable singularity, the function has no principal part at z = 1 and
the residue at 1 is 0; z = 4 is a simple pole, the principal part is 1/(z − 4), and the
residue is 1.
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(b) Clearly, z = 0 is the only singular point. Moreover, for z 6= 0,

sin

(
2

z

)
=
∞∑
n=1

(−1)n−1

(2n− 1)!

(
2

z

)2n−1

.

It is an essental singularity and the principal part is the whole series given above.
The residue of the function at 0 is 2. (corresponding to n = 1 in the expansion
above.)

(c) Let f(z) = (z + 1)/ cos z. Notice that cos z = eiz+e−iz

2
= 0 iff e2iz = −1. That is,

z = (n−1/2)π for any n ∈ Z. All isolated singular points of f(z) are {(n−1/2)π :
n ∈ Z}. Fix any n ∈ Z, notice that

cos z = cos(z − (n− 1

2
)π + (n− 1

2
)π)

= (−1)n sin(z − (n− 1

2
)π)

= (−1)n
(
z − (n− 1

2
)π − 1

3!
(z − (n− 1

2
)π)3 +

1

5!
(z − (n− 1

2
)π)5 + · · ·

)
Hence, 1

cos z
has a simple pole of order 1 at z = (n − 1

2
)π, with residue 1/(−1)n.

Since z+1 is an entire function, the principal part of f(z) at (n−1/2)π is (−1)n(nπ−
π/2 + 1)(z − (n− 1/2)π)−1, and the residue is (−1)n(nπ − π/2 + 1).

J

3. Use residues to evaluate the integral
∫
|z|=3

2z − 3

z(z + 1)
dz.

Solution. Let f(z) = 2z−3
z(z+1)

. All singular points inside the circle {|z| = 3} are 0,−1. So
by Cauchy’s residue theorem,∫

|z|=3

2z − 3

z(z + 1)
dz = 2πi(Res

z=0
f(z) + Res

z=−1
f(z)) = 2πi(−3 + 5) = 4πi.

J

4. Suppose that q is analytic and has a zero of order 1 at z0. Show that f = 1/q2 has a pole
of order 2 at z0 with residue given by

Resz=z0f(z) = −
q′′(z0)

(q′(z0))3
.

Solution. Since q is analytic and has a zero of order 1 at z0, we have q′(z0) 6= 0 and

q(z) = q′(z0)(z − z0) +
q′′(z0)

2
(z − z0)2 +

q′′′(z0)

3!
(z − z0)3 + · · · for z near z0.

= q′(z0)(z − z0)(1 +
q′′(z0)

2q′(z0)
(z − z0) +

q′′′(z0)

6q′(z0)
(z − z0)2 + · · · )

= q′(z0)(z − z0)(1− h(z)),
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where

h(z) = − q
′′(z0)

2q′(z0)
(z − z0)−

q′′′(z0)

6q′(z0)
(z − z0)2 + · · ·

is analytic at z0 and has a zero of order not less than 1 at z0. Therefore, we have

1

q(z)
=

1

q′(z0)(z − z0)
(1 + h(z) + h(z)2 + · · · )

1

q(z)2
=

1

q′(z0)2(z − z0)2
(1 + 2h(z) + 3h(z)2 + · · · )

Recall that h(z) has a zero of order at least 1 at z0, the residue of f at z0 comes from the
term 2h(z), which is 1

q′(z0)2
−2q′′(z0)
2q′(z0)

= −q′′(z0)/q′(z0)3.

J

5. For any N > 0, let γN be the positively oriented boundary of the square bounded by the
lines x = ±(N + 1

2
)π and y = ±(N + 1

2
)π.

(a) Show that ∫
γN

dz

z2 sin z
= 2πi

(
1

6
+ 2

N∑
n=1

(−1)n

n2π2

)
.

(b) Using (a), show that
∞∑
n=1

(−1)n+1

n2
=
π2

12

by estimating
∣∣∣∣∫
γN

dz

z2 sin z

∣∣∣∣ in terms of N .

Solution. (a) Let f(z) = 1/(z2 sin z). All singular points of f(z) inside γN are {nπ :
n ∈ Z, −N ≤ n ≤ N}. For n 6= 0, f(z) has a simple pole there and hence,

Res
z=nπ

f(z) = lim
z→nπ

z − nπ
z2 sin z

= lim
y→0

y

(y + nπ)2 sin(y + nπ)
= lim

y→0

(−1)ny
(y + nπ)2 sin y

=
(−1)n

n2π2

using (y = z−nπ). On the other hand, the residue of f(z) at z = 0 is the coefficient
of the term z in the Laurent series expansion of 1/ sin z. Note that

sin z = z − z3

3!
+
z5

5!
+ · · ·

= z(1− (
z2

3!
− z4

5!
+ · · · ))

1

sin z
=

1

z
(1 + (

z2

3!
− z4

5!
+ · · · ) + (

z2

3!
− z4

5!
+ · · · )2 + · · · )

Therefore, the coefficient of z in the Laurent series expansion is 1/3! = 1/6. By
Cauchy’s residue theorem, we have∫

γN

dz

z2 sin z
= 2πi

(
N∑

n=−N

Res
z=nπ

f(z)

)
= 2πi

(
1

6
+ 2

N∑
n=1

(−1)n

n2π2

)
.
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(b) Write z = x + iy, for x = ±(N + 1
2
)π, we have | sin z| = |(−1)N cos(iy)| =

cosh(y) ≥ 1. For y = (N + 1
2
)π, we have

| sin z| =
∣∣∣∣eixe−y − e−ixey2i

∣∣∣∣ ≥ |e−ixey| − |eixe−y|2
≥ ey − 1

2

For y = −(N + 1
2
)π, we have

| sin z| =
∣∣∣∣eixe−y − e−ixey2i

∣∣∣∣ ≥ |e−ixe−y| − |eixey|2
≥ e−y − 1

2

Therefore, | sin z| ≥ 1 for every z ∈ γN and N ≥ 2.
We may now estimate the integral for N ≥ 2 that∣∣∣∣∫

γN

dz

z2 sin z

∣∣∣∣ ≤ 8(N + 1
2
)π

(N + 1
2
)2π2

→ 0 as N →∞.

Using (a) and taking limit N →∞, we have
∞∑
n=1

(−1)n+1

n2
=
π2

12
.

J
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Optional Part

1. Find the residue at z = 0 of the following functions:

(a)
cot z

z4
;

(b)
z3 + 2z + 1

z2(z + 1)
.

Solution. (a) It suffices to find the coefficient of z3 in the Laurent series of cot z. Notice
that in Q5(a) the Laurent series of 1/ sin z is

1

sin z
=

1

z
(1 + (

z2

3!
− z4

5!
+ · · · ) + (

z2

3!
− z4

5!
+ · · · )2 + · · · )

=
1

z
+
z

6
+

7z3

360
+ · · ·

Hence, we have

cot z = cos z

(
1

sin z

)
= (1− z2

2!
+
z4

4!
+ · · · )(1

z
+
z

6
+

7z3

360
+ · · · )

=
1

z
+
z

6
+

7z3

360
− z

2
− z3

12
+
z3

4!
+ · · ·

Therefore, the required residue is 7/360− 1/12 + 1/24 = −1/45.

(b) The residue at z = 0 is the coeffient of z in the Laurent series of (z3+2z+1)/(z+1).
The Laurent series is given by

(z3 + 2z + 1)(1− z + z2 + · · · ) = 1 + 2z + z3 − z − 2z2 − z4 + · · ·

Hence, the residue is 1.

J

2. For each of the following functions, find all its isolated singular points, write down their
principal parts, classify their types, and compute the residues:

(a)
sin 3z

z
;

(b)
z2

2−
√
z

, where the principal branch is taken for
√
z.

Solution. (a) Clearly, z = 0 is the only singular points of the given function. Moreover,
since both functions sin 3z and z have zero of order 1 at z = 0, this is a removable
singularity. It has no principal part and the residue is 0.
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(b) If the principal branch is taken, then
√
z is not analytic if and only if z is a non-

postive real number. These singular points are not isolated. z = 4 is the only
isolated singular point of the given function. Moreover,

lim
z→4

1

2−
√
z
(z − 4) = lim

z→4
−2−

√
z = −4.

This shows that z = 4 is a simple pole of the function 1
2−
√
z

with residue −4. The
residue of z2/(2−

√
z) at z = 4 is 42(−4) = −64.

On the other hand, we may find the Laurent series expansion of
√
z at z = 4. Since√

z =
√

4 + (z − 4) = 2
√

1 + (z − 4)/4, if the principal branch is taken, then

√
z = 2

(
1 +

1

2

(
z − 4

4

)
+

(1
2
)(−1

2
)

2!

(
z − 4

4

)2

+ · · ·

)

2−
√
z = −z − 4

4
+

(z − 4)2

64
+ · · ·

This also shows that Res
z=4

1

2−
√
z
= −4.

J

3. Use residues to evaluate the integral
∫
|z|=3

z3

4 + z2
dz.

Solution. Let f(z) = z3/(4+z2). The singular points of f(z) inside the circle {|z| = 3}
are±2i. Notice that Res

z=2i
f(z) = (2i)3/(2(2i)) = −2 and Res

z=−2i
f(z) = (−2i)3/(2(−2i)) =

−2. Using Cauchy’s residue theorem, we have∫
|z|=3

z3

4 + z2
dz = 2πi(Res

z=2i
f(z) + Res

z=−2i
f(z)) = −8πi.

J

4. Let a1, a2, . . . , an be distinct complex numbers. Let γ be a circle around a1 such that γ
and its interior do not contain aj for j > 1. Let f(z) = (z − a1)(z − a2) . . . (z − an).

Find
∫
γ

dz

f(z)
.

Solution. The only singular point of 1/f inside the circle γ is a1. By Cauchy’s integral
formual, ∫

γ

dz

f(z)
=

2πi

(a1 − a2)(a1 − a3) . . . (a1 − an)
.

J


