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Compulsory Part

1. Let γ be a positively oriented circle which does not pass through z0 ∈ C. Show that∫
γ

dz

z − z0
=

{
2πi if z0 lies inside γ,
0 if z0 lies outside γ.

Solution. If z0 lies outside γ, then the function 1/(z− z0) is analytic at all points interior
to and on the contour γ. By Cauchy-Goursat theorem, we have

∫
γ

dz
z−z0 = 0. If z0 lies

inside γ, we can apply the Cauchy integral formula to the constant function 1, which gives∫
γ

dz
z−z0 = 2πi. J

2. Let γ be the positively oriented (i.e. going in the counterclockwise direction) boundary
of the square whose sides lie along the lines x = ±2 and y = ±2. Evaluate each of the
following integrals:

(a)
∫
γ

e−z

z − (πi/2)
dz

(b)
∫
γ

cos z

z(z2 + 8)
dz

Solution.

(a) Note that |π/2| < 2, hence πi/2 lies inside γ. Also, the function e−z is analytic at
all points interior to and on the contour γ. Applying the Cauchy integral formula to
the function e−z, we have∫

γ

e−z

z − (πi/2)
dz = 2πi(e−πi/2) = 2πi(−i) = 2π.

(b) Note that z2+8 = (z−2
√
2i)(z+2

√
2i). Since |2

√
2| > 2, both±2

√
2i lie outside

the contour γ. Therefore, cos z
z2+8

is an analytic function at all points interior to and on
the contour γ. Applying the Cauchy integral formula, we have∫

γ

cos z

z(z2 + 8)
dz = 2πi

(
cos 0

02 + 8

)
= πi/4

J

3. Let a ∈ R. By integrating the function eaz/z around the unit circle, parametrized as
γ(θ) = eiθ, −π ≤ θ ≤ π, show that∫ π

0

ea cos θ cos(a sin θ)dθ = π.
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Solution. Using the parametrization γ(θ) = eiθ, −π ≤ θ ≤ π, we have∫
γ

eaz

z
dz =

∫ π

−π

ea(e
iθ)

eiθ
ieiθdθ

= i

∫ π

−π
ea(cos θ+i sin θ)dθ

= i

∫ π

−π
ea cos θ(cos(a sin θ) + i sin (a sin θ))dθ

= i

∫ π

−π
ea cos θ cos(a sin θ)dθ −

∫ π

−π
ea cos θ sin(a sin θ)dθ

= 2i

∫ π

0

ea cos θ cos(a sin θ)dθ

Last equality is due to the fact that ea cos θ cos(a sin θ) is an even function while ea cos θ sin(a sin θ)
is an odd function.

On the other hand, since eaz is entire, the Cauchy integral formula yields∫
γ

eaz

z
dz = 2πi(ea(0)) = 2πi

The result follows by equating the two equations. J

4. Let n ∈ Z and γ be the positively oriented unit circle. Compute
∫
γ

ez

zn
dz. (Hint: there are

two cases to be considered.)

Solution. For n ≤ 0, ez/zn is an entire function. Cauchy-Goursat theorem tells us that∫
γ
ez

zn
dz = 0. For n ≥ 1, we will employ the Cauchy integral formula:

f (m)(z0) =
m!

2πi

∫
γ

f(z)

(z − z0)m+1
dz for any m ≥ 0,

to the function f(z) = ez with z0 = 0. This gives
∫
γ
ez

zn
dz = 2πi

(n−1)!f
(n−1)(0) = 2πi

(n−1)! .
J

5. Let f(z) be an entire function.

(a) If f (n)(z) ≡ 0 for some n ∈ N, show that f(z) is a polynomial.

(b) Prove that if |f(z)| < |z|n for all |z| > R, where R > 0 and n ∈ N, then f(z) must
be a polynomial. (Hint: Use the Cauchy integral formula to estimate f (n+1)(z).)

Solution.

(a) Since f(z) is an entire function, we have the Taylor series representation

f(z) = a0 + a1z + a2z
2 + a3z

3 + · · ·

in the whole complex plane, where ak = 1
2πi

∫
γ

f(s)
(s−0)k+1ds =

f (k)(0)
k!

. The contour γ
is a positively oriented simple closed contour and its interior contains 0.
Since f (n)(z) ≡ 0, we have f (k)(z) ≡ 0 for all k ≥ n. In particular, f (k)(0) = 0.
Therefore, f(z) = a0 + a1z + a2z

2 + . . .+ an−1z
n−1 is a polynomial.
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(b) We will show that f (n+1)(z) ≡ 0 using the Cauchy integral formula. First fix some
z0 ∈ C, and consider any M > 0 such that M > max (|z0|, R). The element z0
is inside the positively oriented contour γM := {z ∈ C : |z| = M}. By Cauchy
integral formula, we have∣∣f (n+1)(z0)

∣∣ = ∣∣∣∣(n+ 1)!

2πi

∫
γM

f(z)

(z − z0)n+2
dz

∣∣∣∣
≤ (n+ 1)!

2π

∫
γM

|f(z)|
|z − z0|n+2

dz

≤ (n+ 1)!

2π

∫
γM

|z|n

(|z| − |z0|)n+2
dz

=
(n+ 1)!

2π

Mn

(M − |z0|)n+2
2πM

Notice that both n and z0 is fixed. Letting M →∞, we would obtain f (n+1)(z0) =
0, and this holds for any z0 ∈ C. Therefore, f (n+1)(z) ≡ 0. By part (a), we conclude
that f must be a polynomial with degree less than n.

J

6. Suppose that f(z) is entire and there exists A > 0 such that |f(z)| ≤ A |z| for all z ∈ C.
Show that f(z) = az for some constant a ∈ C.

Solution. In solution of Q5(a), we have shown that if f is an entire function and f (n)(z) ≡
0, then f is a polynomial with degree less than n. In this question, we can use the Cauchy
integral formula and the given inequality to claim that f (2)(z) ≡ 0 as in Q5(b). Hence,
f(z) = a0 + a1z. The given inequality also suggests that f(0) = a0 = 0. This gives the
desired result.

Here is another way to argue. Since f(z) is an entire function, it admits the Taylor series
representation a0 + a1z + a2z

2 + · · · on the whole complex plane, where f(0) = a0 = 0
by the given inequality. Therefore, the Taylor series after divided by z is still a power
series, i.e. the coefficients satisfy a−n = 0 for n ≥ 1. It is an entire function coinciding
with f(z)

z
for z 6= 0. We may call it f1(z). By the given inequality, |f1(z)| ≤ A for any

z 6= 0. Liouville’s Theorem (every bounded entire function is a constant function) shows
that f1(z) ≡ a for some complex number a. In conclusion, we have f(z) = az for all
z 6= 0. J

Optional Part

1. Let γ be a simple closed contour in C, R ⊂ C be the interior of γ, and f be a continuous
function on γ. Show that the function

F (z) :=

∫
γ

f(s)

s− z
ds,

defined for z ∈ R, is analytic on R with

F ′(z) =

∫
γ

f(s)

(s− z)2
ds

for z ∈ R.
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Solution. From now on, we fix z ∈ R, and notice that

F (z + h)− F (z) =
∫
γ

f(s)

s− (z + h)
− f(s)

s− z
ds

=

∫
γ

f(s)
h

(s− z − h)(s− z)
ds

and then

F (z + h)− F (z)
h

−
∫
γ

f(s)

(s− z)2
ds =

∫
γ

f(s)

(
1

(s− z − h)(s− z)
− 1

(s− z)2

)
ds

=

∫
γ

f(s)

(
h

(s− z)2(s− z − h)

)
ds

(1) Since f is continuous on γ, there is M > 0 such that |f(s)| ≤M for all s ∈ γ.

(2) z is some point interior to γ, so there is δ > 0 so that |s − z| ≥ δ for all s ∈ γ. i.e.
z is kept away from the contour γ.

(3) For |h| < δ/2, we have |s− z − h| ≥ |s− z| − |h| ≥ δ/2.

Therefore,∣∣∣∣F (z + h)− F (z)
h

−
∫
γ

f(s)

(s− z)2
ds

∣∣∣∣ ≤ ∫
γ

|f(s)| |h|
|s− z|2|s− z − h|

ds

≤M
|h|

δ2(δ/2)
· length of γ

Letting h→ 0, we have RHS→ 0. That is,

F ′(z) = lim
h→0

F (z + h)− F (z)
h

=

∫
γ

f(s)

(s− z)2
ds

for z ∈ R. J

2. By integrating the function
1

z

(
z +

1

z

)2n

around the unit circle, parametrized as γ(t) = eit, 0 ≤ t ≤ 2π, show that for any n ∈ N,

1

2π

∫ 2π

0

cos2n t dt =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
.

Solution. Using the parametrization γ(t) = eit, 0 ≤ t ≤ 2π, we have∫
γ

1

z

(
z +

1

z

)2n

dz =

∫ 2π

0

1

eit

(
eit +

1

eit

)2n

eiti dt

= i

∫ 2π

0

(eit + e−it)2n dt

= i22n
∫ 2π

0

cos2n t dt
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On the other hand,

1

z

(
z +

1

z

)
=

1

z

(
2n∑
k=0

(
2n

k

)
zk
(
1

z

)2n−k
)

=
2n∑
k=0

(
2n

k

)
z2(k−n)−1

Recall that (this can be calculated directly, or you may argue that for any n 6= −1, zn has
an antiderivative in C \ {0}.)∫

γ

zndz =

{
2πi if n = −1;
0 otherwise,

we see that ∫
γ

1

z

(
z +

1

z

)2n

dz = 2πi

(
2n

n

)
= 2πi

1 · 2 · · · 2n
(1 · 2 · · ·n)2

Equating the two equations, we obtain∫ 2π

0

cos2n t dt =
2π

22n
1 · 2 · · · 2n
(1 · 2 · · ·n)2

= 2π
1 · 2 · · · 2n

(2 · 4 · · · (2n))2

= 2π
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
.

The result follows by dividing 2π on both sides. J

3. Suppose that f(z) is entire and there exists M ∈ R such that Ref(z) ≤M for all z ∈ C.
Prove that f(z) is a constant function.

Solution. By chain rule, we see that the composite function

ef(z) = eRe f(z)(cos(Im f(z)) + i sin(Im f(z)))

is an entire function. Moreover, |ef(z)| = eRe f(z) ≤ eM for every z. Due to Liouville’s
theorem, ef(z) is a constant function, say ef(z) = C, where C is a nonzero complex
number. For each z ∈ C, we have

f(z) = logC + 2πin for some n ∈ Z.

Notice that at this stage, different z may correspond to different n ∈ Z. We need to argue
that all z share the same n ∈ Z by the continuity of f . Loosely speaking, continuity of
f guarantees that the function f(z) cannot jump from logC + 2πin1 to logC + 2πin2

without taking on any other values in between. This shows that f(z) is a constant func-
tion. J
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4. Suppose that f is analytic in |z| ≤ R and there exists a constant M > 0 such that
|f(z)| ≤M for all |z| ≤ R. Show that, for any n ∈ N, we have∣∣f (n)(z)

∣∣ ≤ n!MR

(R− |z|)n+1

for all |z| < R.

Solution. Consider the postively oriented contour γ = {z ∈ C : |z| = R}. Since f is
analytic at all points interior to and on the contour, by the Cauchy integral formula, we
have

|f (n)(z)| =
∣∣∣∣ n!2πi

∫
γ

f(s)

(s− z)n+1
ds

∣∣∣∣ for any |z| < R,

≤ n!

2π

∫
γ

|f(s)|
(|s| − |z|)n+1

ds

≤ n!

2π

M

(R− |z|)n+1
(2πR) =

n!MR

(R− |z|)n+1
.

J


