THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5220 Complex Analysis and Its Applications 2019-20 Homework 3 Due Date: 19th March 2020

Compulsory Part

1. Let γ be a positively oriented circle which does not pass through $z_0 \in \mathbb{C}$. Show that

$$\int_{\gamma} \frac{dz}{z - z_0} = \begin{cases} 2\pi i & \text{if } z_0 \text{ lies inside } \gamma, \\ 0 & \text{if } z_0 \text{ lies outside } \gamma. \end{cases}$$

2. Let γ be the positively oriented (i.e. going in the counterclockwise direction) boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate each of the following integrals:

(a)
$$\int_{\gamma} \frac{e^{-z}}{z - (\pi i/2)} dz$$

(b)
$$\int_{\gamma} \frac{\cos z}{z(z^2 + 8)} dz$$

3. Let $a \in \mathbb{R}$. By integrating the function e^{az}/z around the unit circle, parametrized as $\gamma(\theta) = e^{i\theta}, -\pi \le \theta \le \pi$, show that

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$

- 4. Let $n \in \mathbb{Z}$ and γ be the positively oriented unit circle. Compute $\int_{\gamma} \frac{e^z}{z^n} dz$. (Hint: there are two cases to be considered.)
- 5. Let f(z) be an entire function.
 - (a) If $f^{(n)}(z) \equiv 0$ for some $n \in \mathbb{N}$, show that f(z) is a polynomial.
 - (b) Prove that if $|f(z)| < |z|^n$ for all |z| > R, where R > 0 and $n \in \mathbb{N}$, then f(z) must be a polynomial. (Hint: Use the Cauchy integral formula to estimate $f^{(n+1)}(z)$.)
- 6. Suppose that f(z) is entire and there exists A > 0 such that $|f(z)| \le A |z|$ for all $z \in \mathbb{C}$. Show that f(z) = az for some constant $a \in \mathbb{C}$.

Optional Part

1. Let γ be a simple closed contour in \mathbb{C} , $R \subset \mathbb{C}$ be the interior of γ , and f be a continuous function on γ . Show that the function

$$F(z) := \int_{\gamma} \frac{f(s)}{s-z} ds,$$

defined for $z \in R$, is analytic on R with

$$F'(z) = \int_{\gamma} \frac{f(s)}{(s-z)^2} ds$$

for $z \in R$.

2. By integrating the function

$$\frac{1}{z}\left(z+\frac{1}{z}\right)^{2n}$$

around the unit circle, parametrized as $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$, show that for any $n \in \mathbb{N}$,

$$\frac{1}{2\pi} \int_0^{2\pi} \cos^{2n} t \, dt = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}.$$

- 3. Suppose that f(z) is entire and there exists $M \in \mathbb{R}$ such that $\operatorname{Re} f(z) \leq M$ for all $z \in \mathbb{C}$. Prove that f(z) is a constant function.
- 4. Suppose that f is analytic in $|z| \leq R$ and there exists a constant M > 0 such that $|f(z)| \leq M$ for all $|z| \leq R$. Show that, for any $n \in \mathbb{N}$, we have

$$\left| f^{(n)}(z) \right| \le \frac{n!MR}{(R-|z|)^{n+1}}$$

for all |z| < R.