THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5220 Complex Analysis and Its Applications 2019-20 Homework 2 Due Date: 5th March 2020

Compulsory Part

1. Suppose that f(z) is differentiable at z_0 , where $z_0 = r_0 e^{i\theta_0} \neq 0$. Show that the derivative $f'(z_0)$ can be written as

$$f'(z_0) = e^{-i\theta_0}(u_r + iv_r)$$

or

$$f'(z_0) = \frac{-i}{z_0}(u_\theta + iv_\theta),$$

where all the partial derivatives are evaluated at (r_0, θ_0) .

Solution. Recall the parametrizaton $\varphi(r, \theta) = (r \cos \theta, r \sin \theta) = (x, y)$ for $0 < r < \infty$ and $0 < \theta \le 2\pi$. If we put $g(r, \theta) = f \circ \varphi(r, \theta)$, then by chain rule, we have $Dg = DfD\varphi$, i.e.

$$\begin{pmatrix} u_r & u_\theta \\ v_r & v_\theta \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

Also apply the Cauchy-Riemann equations, we have

$$u_r + iv_r = u_x \cos \theta + u_y \sin \theta + i(v_x \cos \theta + v_y \sin \theta)$$

= $u_x \cos \theta - v_x \sin \theta + i(v_x \cos \theta + u_x \sin \theta)$
= $u_x (\cos \theta + i \sin \theta) + v_x (-\sin \theta + i \cos \theta)$
= $u_x e^{i\theta} + iv_x e^{i\theta}$
= $f'(z)e^{i\theta}$

This verifies the equation $f'(z_0) = e^{-i\theta_0}(u_r + iv_r)$. The other equation can be verified similarly.

$$u_{\theta} + iv_{\theta} = u_x(-r\sin\theta) + u_y(r\cos\theta) + i(v_x(-r\sin\theta) + v_y(r\cos\theta))$$

= $u_x(-r\sin\theta) - v_x(r\cos\theta) + i(v_x(-r\sin\theta) + u_x(r\cos\theta))$
= $u_x(-r\sin\theta + ir\cos\theta) + v_x(-r\cos\theta - ir\sin\theta)$
= $iu_xz - v_xz$
= $iz(u_x + iv_x) = izf'(z)$

2. Consider the following function

$$f(z) = \begin{cases} (1+i)\frac{\mathrm{Im}(z^2)}{|z|^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

- (a) Show that the Cauchy-Riemann equations are satisfied at z = 0.
- (b) Is f(z) differentiable at z = 0?

Solution.

(a) From the definition of f, we have

$$u(x,y) = v(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Notice that

$$\partial_x u(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0.$$

Similarly, we have $\partial_y u(0,0) = \partial_x v(0,0) = \partial_y v(0,0) = 0$. Therefore, the Cauchy-Riemann equations are satisfied at z = 0.

- (b) The function f(z) is not differentiable at z = 0, because it is not continuous at z = 0. To see this, if (x, y) = (t, t) for some real number t ≠ 0, then f(x, y) = ^{2t²}/_{2t²} = 1. For any δ > 0, there is some z ∈ C with |z| < δ, but |f(z) - f(0)| ≥ 1, say z = (1 + i) ^δ/_{2√2}. From above, we see that f(z) = 1. On the other hand, |z| = √2 ^δ/_{2√2} = ^δ/₂ < δ. This completes the proof.</p>
- 3. Let γ be the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ in the counterclockwise direction. Evaluate the integral $\int_{\gamma} z^m \bar{z}^n dz$ for any $m, n \in \mathbb{Z}$.

Solution. Parametrize γ by $\gamma(t) = e^{it}$ for $0 \le t \le 2\pi$. Then, $z = e^{it}$, $\overline{z} = e^{-it}$ and $dz = ie^{it}dt$. The integral can be written as

$$\begin{split} \int_{\gamma} z^{m} \bar{z}^{n} dz &= \int_{0}^{2\pi} e^{imt} e^{-int} i e^{it} dt \\ &= i \int_{0}^{2\pi} e^{i(m-n+1)t} dt \\ &= \begin{cases} 2\pi i & \text{if } m-n+1=0; \\ \frac{1}{m-n+1} e^{i(m-n+1)t}|_{t=0}^{2\pi} & \text{otherwise.} \end{cases} \\ &= \begin{cases} 2\pi i & \text{if } m-n=-1; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

- 4. Evaluate the integral $\int_{\gamma} z^2 dz$, if
 - (a) γ is a straight line segment from z = 2 to z = 2i;
 - (b) γ is the major arc of the circle $\{z \in \mathbb{C} : |z| = 2\}$ from z = 2 to z = 2i.

-

Solution. Notice that z^2 is an entire function with an antiderivative $F(z) = \frac{z^3}{3}$. Therefore, the integral depends only on the end points of the contour. For both (a) and (b), the integral equals $F(2i) - F(2) = -\frac{8}{3}(i+1)$. (see Week 3 Lecture notes)

5. Let γ be the arc of the circle $\{z \in \mathbb{C} : |z| = 2\}$ from z = 2 to z = 2i that lies in the first quadrant. Show that

$$\left| \int_{\gamma} \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}.$$

Solution. For any $z \in \gamma$, we have |z| = 2. In particular, $|z^2 - 1| \ge |z|^2 - 1 = 3$. Moreover, γ is a quarter of the circle $\{z \in \mathbb{C} : |z| = 2\}$, so the length of the contour γ is $\frac{2\pi(2)}{4} = \pi$. Therefore, we have

$$\left| \int_{\gamma} \frac{dz}{z^2 - 1} \right| \le \int_{\gamma} \frac{dz}{3} = \frac{\pi}{3}$$

6. Let γ_R be the arc of the circle $\{z \in \mathbb{C} : |z| = R\}$ from z = R to z = -R that lies in the upper half plane, where R > 1. Show that

$$\left| \int_{\gamma_R} \frac{z^2}{z^6 + 1} dz \right| \le \frac{\pi R^3}{R^6 - 1},$$

and hence show that

$$\lim_{R \to +\infty} \int_{\gamma_R} \frac{z^2}{z^6 + 1} dz = 0.$$

Solution. For any $z \in \gamma_R$, we have $|z^6 + 1| \ge |z|^6 - 1 = R^6 - 1 > 0$. Moreover, the length of the contour γ_R is $\frac{2\pi R}{2} = \pi R$. Therefore, we have

$$\left| \int_{\gamma_R} \frac{z^2}{z^6 + 1} dz \right| \leq \int_{\gamma_R} \frac{|z|^2}{|z^6 + 1|} dz$$
$$\leq \int_{\gamma_R} \frac{R^2}{R^6 - 1} dz$$
$$= \frac{\pi R^3}{R^6 - 1}$$

As $R \to \infty$, it is easy to see that $\frac{\pi R^3}{R^6-1} \to 0$, hence

$$\lim_{R \to +\infty} \int_{\gamma_R} \frac{z^2}{z^6 + 1} dz = 0.$$

◀

Optional Part

1. Find the domain over which the function

$$f(z) = f(x + iy) = |x^2 - y^2| + 2i |xy|$$

is analytic.

Solution. Let $u(x,y) = |x^2 - y^2|$ and v(x,y) = 2|xy|. If $(x_0,y_0) \in \mathbb{R}^2$ satisfying $u(x_0,y_0) \neq 0$ and $v(x_0,y_0) \neq 0$, we can compute their parital derivatives:

$$u_x(x_0, y_0) = 2x_0 \frac{x_0^2 - y_0^2}{|x_0^2 - y_0^2|} \qquad u_y(x_0, y_0) = -2y_0 \frac{x_0^2 - y_0^2}{|x_0^2 - y_0^2|}$$
$$v_x(x_0, y_0) = 2y_0 \frac{x_0 y_0}{|x_0 y_0|} \qquad v_y = 2x_0 \frac{x_0 y_0}{|x_0 y_0|}$$

We observe that the Cauchy-Riemann equations hold if and only if $\frac{x_0^2 - y_0^2}{|x_0^2 - y_0^2|} = \frac{x_0 y_0}{|x_0 y_0|}$. That is, $x_0 y_0$ and $x_0^2 - y_0^2$ have the same sign. The complex plane \mathbb{C} is partitioned into 8 regions by 4 straight lines, namely $\{x = 0\}$, $\{y = 0\}$, $\{x = y\}$ and $\{x = -y\}$. In the polar coordinate, the 8 regions are respectively $\{0 < \theta < \pi/4\}$, $\{\pi/4 < \theta < \pi/2\}$, $\{\pi/2 < \theta < 3\pi/4\}$, $\{3\pi/4 < \theta < \pi\}$, $\{\pi < \theta < 5\pi/4\}$, $\{5\pi/4 < \theta < 3\pi/2\}$, $\{3\pi/2 < \theta < 7\pi/4\}$ and $\{7\pi/4 < \theta < 2\pi\}$. In order for xy and $x^2 - y^2$ to have the same sign, (x, y) must lie in the regions $\{0 < \theta < \pi/4\}$, $\{\pi/2 < \theta < 3\pi/4\}$, $\{\pi < \theta < 5\pi/4\}$ and $\{3\pi/2 < \theta < 7\pi/4\}$. Moreover, for any point outside these regions, its neighborhood must intersect one of the other 4 regions, i.e. $\{\pi/4 < \theta < \pi/2\}$, $\{3\pi/4 < \theta < \pi\}$, $\{5\pi/4 < \theta < 3\pi/2\}$ and $\{7\pi/4 < \theta < 2\pi\}$, where f is not differentiable.

Therefore, the domains over which f is analytic, are $\{0 < \theta < \pi/4\}$, $\{\pi/2 < \theta < 3\pi/4\}$, $\{\pi < \theta < 5\pi/4\}$ or $\{3\pi/2 < \theta < 7\pi/4\}$.

2. Suppose that f(z) is analytic on a domain D, where D is symmetric with respect to the real axis. Show that $g(z) := \overline{f(\overline{z})}$ is a well-defined analytic function on D.

Solution. Let u, v be the real-valued functions on D such that f(x + iy) = u(x, y) + iv(x, y). Since D is symmetric with respect to the real axis, u(x, y) is well-defined if and only if u(x, -y) is well-defined. This is also true for the function v(x, y). Note that

$$g(x+iy) = \overline{f(x-iy)} = u(x,-y) - iv(x,-y).$$

If we put p(x, y), q(x, y) be the real part and imaginary part of g, then their partial derivatives at (x_0, y_0) are given by:

$$p_x(x_0, y_0) = u_x(x_0, -y_0) \qquad p_y(x_0, y_0) = -u_y(x_0, -y_0) q_x(x_0, y_0) = -v_x(x_0, -y_0) \qquad q_y(x_0, y_0) = v_y(x_0, -y_0)$$

Since $u_x = v_y$ and $u_y = -v_x$, it follows that $p_x = q_y$ and $p_y = -q_x$. Moreover, the function $(x, y) \mapsto (p(x, y), q(x, y))$ is just the composite function

$$(x,y)\mapsto (x,-y)\mapsto (u(x,-y),v(x,-y))\mapsto (u(x,-y),-v(x,-y)),$$

hence it is differentiable. Therefore, g is complex differentiable at every point of D. (see Week 2 Lecture notes).

3. Let γ_R be the circle $\{z \in \mathbb{C} : |z| = R\}$ in the counterclockwise direction. Show that, for R > 2,

$$\left| \int_{\gamma_R} \frac{3z - 1}{z^4 + 4z^2 + 3} dz \right| \le \frac{2\pi R(3R + 1)}{(R^2 - 1)(R^2 - 3)}$$

Solution. On the circle $\{z \in \mathbb{C} : |z| = R\}$, $|3z - 1| \leq 3|z| + 1 = 3R + 1$, and $|z^4 + 4z^2 + 3| = |(z^2 + 1)(z^2 + 3)| \geq (|z|^2 - 1)(|z|^2 - 3) = (R^2 - 1)(R^2 - 3)$. Therefore, we have

$$\left|\frac{3z-1}{z^4+4z^2+3}\right| \le \frac{3R+1}{(R^2-1)(R^2-3)} \quad \text{for every } |z| = R$$

Since the length of the contour is $2\pi R$, the result follows.

4. Let γ_R be the vertical line segment from R to $R + 4\pi i$, where R > 0. Show that

$$\left| \int_{\gamma_R} \frac{2e^z}{1+e^{3z}} dz \right| \le \frac{8\pi e^R}{e^{3R}-1}.$$

Solution. For every $z \in \gamma_R$, z = R + iy for some $0 \le y \le 4\pi$, hence we have $|2e^z| = 2e^R$ and $|1 + e^{3z}| \ge |e^{3z}| - 1 = e^{3R} - 1$. Since the length of the contour is 4π , the result follows.

5. Does the function $f(z) = \frac{1}{z^2}$ defined on $\mathbb{C} \setminus \{0\}$ have an antiderivative?

Solution. Yes, $-\frac{1}{z}$ is an antiderivative for the function f(z). However, the function $\frac{1}{z}$ has no antiderivative on the domain $\mathbb{C} \setminus \{0\}$. This can be checked from the calculation that

$$\int_{|z|=1} \frac{dz}{z} = \int_0^{2\pi} \frac{1}{e^{it}} i e^{it} dt = 2\pi i \neq 0.$$

You can also argue in this way: since the function f(z) is analytic in $D := \mathbb{C} \setminus \{0\}$, to claim that f(z) has an antiderivative, it suffices to check that

$$\int_{|z|=1} f(z)dz = 0.$$

In general, you need to check that $\int_{\gamma} f(z) dz = 0$ for every closed contour γ in D, but by the analyticity of f and the Cauchy-Goursat theorem, you only need to evaluate that particular contour.